scholarly journals Nest architecture shapes the collective behaviour of harvester ants

2015 ◽  
Vol 11 (10) ◽  
pp. 20150695 ◽  
Author(s):  
Noa Pinter-Wollman

Structures influence how individuals interact and, therefore, shape the collective behaviours that emerge from these interactions. Here I show that the structure of a nest influences the collective behaviour of harvester ant colonies. Using network analysis, I quantify nest architecture and find that as chamber connectivity and redundancy of connections among chambers increase, so does a colony's speed of recruitment to food. Interestingly, the volume of the chambers did not influence speed of recruitment, suggesting that the spatial organization of a nest has a greater impact on collective behaviour than the number of workers it can hold. Thus, by changing spatial constraints on social interactions organisms can modify their behaviour and impact their fitness.

2018 ◽  
Author(s):  
Renato Pagliara ◽  
Deborah M. Gordon ◽  
Naomi Ehrich Leonard

AbstractAnt colonies regulate activity in response to changing conditions without using centralized control. Harvester ant colonies forage in the desert for seeds, and their regulation of foraging manages a tradeoff between spending and obtaining water. Foragers lose water while outside in the dry air, but the colony obtains water by metabolizing the fats in the seeds they eat. Previous work shows that the rate at which an outgoing forager leaves the nest depends on its recent experience of brief antennal contact with returning foragers that carry a seed. We examine how this process can yield foraging rates that are robust to uncertainty and responsive to temperature and humidity across minutes to hour-long timescales. To explore possible mechanisms, we develop a low-dimensional analytical model with a small number of parameters that captures observed foraging behavior. The model uses excitability dynamics to represent response to interactions inside the nest and a random delay distribution to represent foraging time outside the nest. We show how feedback of outgoing foragers returning to the nest stabilizes the incoming and outgoing foraging rates to a common value determined by the “volatility” of available foragers. The model exhibits a critical volatility above which there is sustained foraging at a constant rate and below which there is cessation of foraging. To explain how the foraging rates of colonies adjust to temperature and humidity, we propose a mechanism that relies on foragers modifying their volatility after they leave the nest and get exposed to the environment. Our study highlights the importance of feedback in the regulation of foraging activity and points to modulation of volatility as a key to explaining differences in foraging activity in response to conditions and across colonies. Our results present opportunities for generalization to other contexts and systems with excitability and feedback across multiple timescales.Author SummaryWe investigate the collective behavior that allows colonies of desert harvester ants to regulate foraging activity in response to environmental conditions. We develop an analytical model connecting three processes: 1) the interactions between foragers returning to the nest and available foragers waiting inside the nest, 2) the effect of these interactions on the likelihood of available foragers to leave the nest to forage, and 3) the return of foragers to the nest after finding seeds. We propose a mechanism in which available foragers modify their response to interactions after their first exposure to the environment. We show how this leads to colony foraging rates that adjust to environmental conditions over time scales from minutes to hours. Our model may prove useful for studying resilience in other classes of systems with excitatory dynamics.


1995 ◽  
Vol 198 (2) ◽  
pp. 521-530 ◽  
Author(s):  
J Lighton ◽  
D Berrigan

Do developmental constraints in ant colonies limit gas exchange strategies to those displayed by female alates (presumptive queens)? In the xeric harvester ant genus Messor, we found that M. pergandei and M. julianus female alates ventilated highly discontinuously, as predicted, but M. julianus workers ventilated less discontinuously and M. pergandei workers (which occur in more xeric habitats) ventilated continuously. We present the salient characteristics of the discontinuous ventilation cycles of the species and the manner in which they are modulated by CO2 emission rates at a single temperature (24 °C). We demonstrate that, in M. julianus workers, open-spiracle phase CO2 emission rate only slightly exceeds overall CO2 emission rate, making discontinuous ventilation marginal, a state extrapolated in M. pergandei to continuous ventilation. However, workers are plainly capable of far greater rates of CO2 emission than when inactive at 24 °C, so the lack of discontinuous ventilation in M. pergandei under normoxic conditions is not likely to be imposed by physiological constraints and may, in fact, be a response to its xeric environment. We hypothesize ­ aside from phylogenetic effects ­ that discontinuous ventilation occurs primarily in insects that may experience hypoxic and hypercapnic conditions, such as ant queens during claustral colony foundation and perhaps workers within the nest environment; that discontinuous ventilation is not necessarily essential to reduce respiratory water loss; and that it will not necessarily occur in castes or species routinely exposed to xeric but normoxic conditions.


2021 ◽  
Author(s):  
Anshuman Swain ◽  
Sara D Williams ◽  
Louisa J Di Felice ◽  
Elizabeth A Hobson

In animal societies, individuals may take on different roles to fulfil their own needs and the needs of their groups. Ant colonies display high levels of organisational complexity, with ants fulfilling different roles at different timescales (what is known as task allocation). Factors affecting task allocation can be at the individual level (e.g., physiology), or at the group level (e.g., interaction histories). In this work, we focus on group level processes by exploring the impact of the history of interaction networks on task allocation and task switching using a previously published dataset (Mersch et al., 2013) tracking the behaviour of six Camponotus fellah colonies over 41 days. First, we investigated the architecture of interaction networks using node (individual) level network measures and their relation to the individual's task - foraging, cleaning or nursing - and whether or not the ant switched tasks. We then explored how noisy information propagation is among ants, as a function of the colony composition (how many ants are carrying out which tasks), through the information-theoretic metric of effective information. Our results show that interaction history affected task allocation, with ants more likely to switch to a task if they had interacted with other ants carrying out that task. The degree to which interaction history affected task allocation, as well as the noise in their interactions, depended on which groups of ants are interacting. Overall, we showed that colony cohesion is stable even as ant-level network measures vary more for ants when they switched functional groups; thus ant colonies maintain a high level of information flow as determined by network analysis and ant functional groups play different roles in maintaining colony cohesion.


2004 ◽  
Vol 36 (5) ◽  
pp. 797-804 ◽  
Author(s):  
Diane Wagner ◽  
Jeremy B Jones ◽  
Deborah M Gordon

2018 ◽  
Vol 373 (1753) ◽  
pp. 20170244 ◽  
Author(s):  
Tim Ireland ◽  
Simon Garnier

The similarities between the structures built by social insects and by humans have led to a convergence of interests between biologists and architects. This new, de facto interdisciplinary community of scholars needs a common terminology and theoretical framework in which to ground its work. In this conceptually oriented review paper, we review the terms ‘information’, ‘space’ and ‘architecture’ to provide definitions that span biology and architecture. A framework is proposed on which interdisciplinary exchange may be better served, with the view that this will aid better cross-fertilization between disciplines, working in the areas of collective behaviour and analysis of the structures and edifices constructed by non-humans; and to facilitate how this area of study may better contribute to the field of architecture. We then use these definitions to discuss the informational content of constructions built by organisms and the influence these have on behaviour, and vice versa. We review how spatial constraints inform and influence interaction between an organism and its environment, and examine the reciprocity of space and information on construction and the behaviour of humans and social insects. This article is part of the theme issue ‘Interdisciplinary approaches for uncovering the impacts of architecture on collective behaviour’.


2017 ◽  
Vol 28 (8) ◽  
pp. 1043-1053 ◽  
Author(s):  
G. R. Ramirez-San Juan ◽  
P. W. Oakes ◽  
M. L. Gardel

In vivo, geometric cues from the extracellular matrix (ECM) are critical for the regulation of cell shape, adhesion, and migration. During contact guidance, the fibrillar architecture of the ECM promotes an elongated cell shape and migration along the fibrils. The subcellular mechanisms by which cells sense ECM geometry and translate it into changes in shape and migration direction are not understood. Here we pattern linear fibronectin features to mimic fibrillar ECM and elucidate the mechanisms of contact guidance. By systematically varying patterned line spacing, we show that a 2-μm spacing is sufficient to promote cell shape elongation and migration parallel to the ECM, or contact guidance. As line spacing is increased, contact guidance increases without affecting migration speed. To elucidate the subcellular mechanisms of contact guidance, we analyze quantitatively protrusion dynamics and find that the structured ECM orients cellular protrusions parallel to the ECM. This spatial organization of protrusion relies on myosin II contractility, and feedback between adhesion and Rac-mediated protrusive activity, such that we find Arp2/3 inhibition can promote contact guidance. Together our data support a model for contact guidance in which the ECM enforces spatial constraints on the lamellipodia that result in cell shape elongation and enforce migration direction.


2012 ◽  
Vol 23 (5) ◽  
pp. 1022-1029 ◽  
Author(s):  
Noa Pinter-Wollman ◽  
Deborah M. Gordon ◽  
Susan Holmes
Keyword(s):  

1998 ◽  
Vol 67 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Deborah M. Gordon ◽  
Alan Kulig
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document