scholarly journals David Edgar Cartwright. 21 October 1926 — 2 December 2015

2017 ◽  
Vol 63 ◽  
pp. 99-115
Author(s):  
David J. Webb

David Cartwright was one of the world's leading authorities on the tides. However, when reflecting on his life, Cartwright made the point that his early scientific career was not a success. Indeed in 1953, at the age of 27, he had virtually despaired of any creative scientific future. At the time he was being pressurized to stop his work on the statistics of ship motions but his prospects rapidly changed when he was invited to apply for a post at the new National Institute of Oceanography (NIO) being set up by George Deacon. At NIO he soon made important contributions to the study of ocean waves, especially the calculation of directional spectrum and wave climate. His earlier involvement with ship motions also culminated in a successful joint study with Louis Rydill on the response of ships to the spectrum of waves. Following this, his use of computer methods for time-series analysis led to an invitation to the Scripps Institution of Oceanography where, with Walter Munk, he developed the response method of analysing tides making use of the very long tidal records collected from Hawaii and Newlyn. He was also made aware of the significant lack of good tidal data from the deep ocean. Returning to the UK, he continued these interests, studying the deep-ocean tides of the Atlantic and leading an international collaboration that measured deep-ocean tides. He also investigated the effect of tides on storm surges around the UK. He became assistant director in charge of the Institute of Oceanographic Sciences (IOS) Bidston laboratory, where he continued these activities and started research on estimating the tides using data from the Seasat radar altimeter. After retirement he successfully extended this work with Richard Ray at the Goddard Space Flight Center. Using Geosat altimeter data they generated accurate global maps of the tides in a set of papers that Cartwright considered to be his best work. He wrote a successful book titled ‘ Tides: a scientific history ’, and later published further work with Ray on the internal tides of the ocean.

Oceanography ◽  
2021 ◽  
Vol 34 (2) ◽  
Author(s):  
Jorge Magalhães ◽  
Werner Alpers ◽  
Adriana Santos-Ferreira ◽  
José da Silva

Breaking surface waves play a key role in the exchange of momentum, heat, and gases between the atmosphere and the ocean. Waves break at the ocean’s surface at high or medium wind speeds or in the absence of wind due to shoaling of the seafloor. However, surface waves also break due to interactions with internal solitary waves (ISWs). In this paper, we revisit surface wave breaking caused by ISWs and how ISWs are manifested in synthetic aperture radar (SAR) images acquired by the TerraSAR-X and Sentinel-1 satellites and in high-resolution radar altimeter data acquired by the SAR altimeter (SRAL) onboard the Sentinel-3A satellite. X-band TerraSAR-X images acquired at low wind speeds suggest that meter-scale surface breaking waves resulting from large-scale ISWs are associated with large modulations in backscatter at HH and VV polarizations that cannot be explained by present theories. Furthermore, Sentinel-1 C-band SAR satellite images acquired at moderate to high wind speeds also exhibit large radar signatures from surface wave breaking at VV and VH cross-polarizations. Finally, new observations from the Sentinel-3 SRAL altimeter show clear evidence of significant wave height (SWH) variations along the propagation paths of ISWs. The SWH signatures are unique in showing that the surface wave energy does not return to its unperturbed level after an ISW passes, most likely because intense meter-scale wave breaking results in surface wave energy dissipation. In summary, these results show that surface wave breaking contributes significantly to radar remote sensing of ISWs.


2007 ◽  
Vol 25 (3) ◽  
pp. 581-595 ◽  
Author(s):  
G. Emmanouil ◽  
G. Galanis ◽  
G. Kallos ◽  
L. A. Breivik ◽  
H. Heiberg ◽  
...  

Abstract. An operational assimilation system incorporating significant wave height observations in high resolution numerical wave models is studied and evaluated. In particular, altimeter satellite data provided by the European Space Agency (ESA-ENVISAT) are assimilated in the wave model WAM which operates in two different wave climate areas: the Mediterranean Sea and the Indian Ocean. The first is a wind-sea dominated area while in the second, swell is the principal part of the sea state, a fact that seriously affects the performance of the assimilation scheme. A detailed study of the different impact is presented and the resulting forecasts are evaluated against available buoy and satellite observations. The corresponding results show a considerable improvement in wave forecasting for the Indian Ocean while in the Mediterranean Sea the assimilation impact is restricted to isolated areas.


2021 ◽  
Vol 13 (12) ◽  
pp. 2413
Author(s):  
Lin Ren ◽  
Jingsong Yang ◽  
Xiao Dong ◽  
Yongjun Jia ◽  
Yunhua Zhang

The interferometric imaging radar altimeter (InIRA) aboard the Chinese Tiangong-2 space laboratory is the first spaceborne imaging radar working at low incidence angles. This study focuses on the retrieval of significant wave heights (SWHs) from InIRA data. The retrieved SWHs can be used for correcting the sea state bias of InIRA-derived sea surface heights and can supplement SWH products from other spaceborne sensors. First, we analyzed tilt, range bunching and velocity bunching wave modulations at low incidence angles, and we found clear dependencies between the SWH and two defined factors, range and azimuth integration, for ocean waves in the range and azimuth directions, respectively. These dependencies were further confirmed using InIRA measurements and collocated WaveWatch III (WW3) data. Then, an empirical orthogonal SWH model using the range and azimuth integration factors as model inputs was proposed. The model was segmented by the incidence angle, and the model coefficients were estimated by fitting the collocation at each incidence angle bin. Finally, the SWHs were retrieved from InIRA data using the proposed model. The retrievals were validated using both WW3 and altimeter (JASON2, JASON3, SARAL, and HY2A) SWHs. The validation with WW3 data shows a root mean square error (RMSE) of 0.43 m, while the average RMSE with all traditional altimeter data is 0.48 m. This indicates that the InIRA can be used to measure SWHs.


2021 ◽  
Vol 13 (13) ◽  
pp. 2530
Author(s):  
Xiaoyu Zhao ◽  
Zhenhua Xu ◽  
Ming Feng ◽  
Qun Li ◽  
Peiwen Zhang ◽  
...  

The mode-1 semidiurnal internal tides that emanate from multiple sources in the Sulu-Sulawesi Seas are investigated using multi-satellite altimeter data from 1993–2020. A practical plane-wave analysis method is used to separately extract multiple coherent internal tides, with the nontidal noise in the internal tide field further removed by a two-dimensional (2-D) spatial band-pass filter. The complex radiation pathways and interference patterns of the internal tides are revealed, showing a spatial contrast between the Sulu Sea and the Sulawesi Sea. The mode-1 semidiurnal internal tides in the Sulawesi Sea are effectively generated from both the Sulu and Sangihe Island chains, forming a spatially inhomogeneous interference pattern in the deep basin. A cylindrical internal tidal wave pattern from the Sibutu passage is confirmed for the first time, which modulates the interference pattern. The interference field can be reproduced by a line source model. A weak reflected internal tidal beam off the Sulawesi slope is revealed. In contrast, the Sulu Island chain is the sole energetic internal tide source in the Sulu Sea, thus featuring a relatively consistent wave and energy flux field in the basin. These energetic semidiurnal internal tidal beams contribute to the frequent occurrence of internal solitary waves (ISWs) in the study area. On the basis of the 28-year consistent satellite measurements, the northward semidiurnal tidal energy flux from the Sulu Island chain is 0.46 GW, about 25% of the southward energy flux. For M2, the altimetric estimated energy fluxes from the Sulu Island chain are about 80% of those from numerical simulations. The total semidiurnal tidal energy flux from the Sulu and Sangihe Island chains into the Sulawesi Sea is about 2.7 GW.


Author(s):  
Céline Drouet ◽  
Nicolas Cellier ◽  
Jérémie Raymond ◽  
Denis Martigny

In-service monitoring can help to increase safety of ships especially regarding the fatigue assessment. For this purpose, it is compulsory to know the environmental conditions encountered: wind, but also the full directional wave spectrum. During the EU TULCS project, a full scale measurements campaign has been conducted onboard the CMA-CGM 13200 TEU container ship Rigoletto. She has been instrumented to measure deformation of the ship as well as the sea state encountered during its trip. This paper will focus on the sea state estimation. Three systems have been installed to estimate the sea state encountered by the Rigoletto: An X-band radar from Ocean Waves with WAMOS® system and two altimetric wave radars from RADAC®. Nevertheless, the measured significant wave height can be disturbed by several external elements like bow waves, sprays, sea surface ripples, etc… Furthermore, ship motions are also measured and can provide another estimation of the significant wave height using a specific algorithm developed by DCNS Research for the TULCS project. As all those estimations are inherently different, it is necessary to make a fusion of those data to provide a single estimation (“best estimate”) of the significant wave height. This paper will present the data fusion process developed for TULCS and show some first validation results.


Author(s):  
Stephan D. A. Hannot ◽  
Jort M. van Wijk

Deep ocean mining systems will have to operate often in harsh weather conditions with heavy sea states. A typical mining system consists of a Mining Support Vessel (MSV) with a Vertical Transport System (VTS) attached to it. The transport system is a pump pipeline system using centrifugal pumps. The heave motions of the ship are transferred to the pump system due to the riser-ship coupling. Ship motions thus will have a significant influence on the internal flow in the VTS. In this paper, the influence of heave motions on the internal flow in the VTS for a typical mining system for Seafloor Massive Sulfide (SMS) deposits in Papua New Guinea is analyzed. Data on the wave climate in the PNG region is used to compute the ship motions of a coupled MSV-VTS. The ship motions then are translated into forces acting on the internal flow in order to compute fluctuations in the internal flow. In this way, the workability of the mining system with respect to the system’s production can be assessed. Based on a detailed analysis of the internal flow in relation to ship motions, the relevance of a coupled analysis for the design of VTS is made clear. This paper provides a method for performing such analyses.


Sign in / Sign up

Export Citation Format

Share Document