scholarly journals Quantitative characterization of iridescent colours in biological studies: a novel method using optical theory

2018 ◽  
Vol 9 (1) ◽  
pp. 20180049 ◽  
Author(s):  
Hugo Gruson ◽  
Christine Andraud ◽  
Willy Daney de Marcillac ◽  
Serge Berthier ◽  
Marianne Elias ◽  
...  

Iridescent colours are colours that change with viewing or illumination geometry. While they are widespread in many living organisms, most evolutionary studies on iridescence do not take into account their full complexity. Few studies try to precisely characterize what makes iridescent colours special: their angular dependency. Yet, it is likely that this angular dependency has biological functions and is therefore submitted to evolutionary pressures. For this reason, evolutionary biologists need a repeatable method to measure iridescent colours as well as variables to precisely quantify the angular dependency. In this study, we use a theoretical approach to propose five variables that allow one to fully describe iridescent colours at every angle combination. Based on the results, we propose a new measurement protocol and statistical method to reliably characterize iridescence while minimizing the required number of time-consuming measurements. We use hummingbird iridescent feathers and butterfly iridescent wings as test cases to demonstrate the strengths of this new method. We show that our method is precise enough to be potentially used at intraspecific level while being also time-efficient enough to encompass large taxonomic scales.

Author(s):  
А.В. Белашов ◽  
А.А. Жихорева

A novel method for the quantitative characterization of fixed histological samples based on the statistical analysis of their phase images obtained using digital holographic microscopy is developed and presented. The proposed approach allows for fully automated processing of reconstructed phase images and obtaining quantitative data of morphological and optical characteristics of histological tissues structures. The method was validated on three histological samples of different types of tissues: ciliated columnar epithelium, elastic cartilage, and liver.


2020 ◽  
Vol 115 (7) ◽  
pp. 263-269
Author(s):  
Fengxiang Luo ◽  
Zhong Xiang ◽  
Zhang Chunxiao ◽  
Biyu Peng ◽  
Zhongzhen Long

Glycoconjugates, herein glyco-protein conjugates, composed of protein and saccharide chains are the main components of the interfibrillar matrix in skin which need to be fully removed in the leather making process. The application of glycosidases can assist unhairing and skin fiber opening-up, resulting in the improvement of leather quality, by breaking the glycoconjugates safely and efficiently in mild conditions. The biotechnology assisted by glycosidases, a big family of over 200 kinds of enzymes, has a great potential but the related mechanisms and the efficiency of different glycosidases are still not clear, which interferes with its wide application. To screen the proper glycosidases, a novel method of evaluating the catalytic hydrolysis properties of glycosidases towards skin glycoconjugates based a special hide powder substrate, simulating the actual leather processing, was established through detecting the produced amount of the total sugar in the solution. The special substrate was prepared, the determination conditions were optimized, then the performances of several typical glycosidases were evaluated and their application effects in soaking process of leather making were also investigated. The results show that the optimum testing conditions are lower than 4 h of the reacting time, optimally 2 h, and lower than 40 U/mL of the enzyme concentration, optimally 0-25 U/mL based on 2 g of the substrate; the results to evaluate the properties of some glycosidases based on the established method are positively related to their applying effects in soaking. The new method with better repeatability can be used as an available tool to correctly select glycosidases and optimize process parameters for correct use.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6409
Author(s):  
Luca Sagresti ◽  
Sergio Rampino

The Charge-Displacement (CD) analysis has proven to be a powerful tool for a quantitative characterization of the electron-density flow occurring upon chemical bonding along a suitably chosen interaction axis. In several classes of interesting intermolecular interactions, however, an interaction axis cannot be straightforwardly defined, and the CD analysis loses consistency and usefulness. In this article, we propose a general, flexible reformulation of the CD analysis capable of providing a quantitative view of the charge displacement along custom curvilinear paths. The new scheme naturally reduces to ordinary CD analysis if the path is chosen to be a straight line. An implementation based on a discrete sampling of the electron densities and a Voronoi space partitioning is described and shown in action on two test cases of a metal-carbonyl and a pyridine-ammonia complex.


2018 ◽  
Vol 39 (4) ◽  
pp. 474-482
Author(s):  
Hoang Thi Le Thuong ◽  
Nguyen Quang Hao ◽  
Tran Thi Thuy

Eight yeast strains (denoted as D1 to D8) were isolated from samples of natural fermented pineapple. Strain D8 showed highest alcoholic production at low pH and special aroma of pineapple has been chosen for further study. Taxonomic characterization of strain D8 using morphological, biochemical and molecular biological studies confirmed that strain D8  belong to Saccharomycetaceae family, Saccharomycetales order and Saccharomyces cerevisiae species. Therefore, we named this strain as Saccharomyces cerevisiae D8 for further study on Brandy production from pineapple. Citation: Hoang Thi Le Thuong, Nguyen Quang Hao, Tran Thi Thuy, 2017. Taxonomic characterization and identification of Saccharomyces cerevisiae D8 for brandy production from pineapple. Tap chi Sinh hoc, 39(4): 474- 482. DOI: 10.15625/0866-7160/v39n4.10864.*Corresponding author: [email protected] Received 5 December 2016, accepted 12 August 2017


Sign in / Sign up

Export Citation Format

Share Document