scholarly journals Threshold parameters for a model of epidemic spread among households and workplaces

2009 ◽  
Vol 6 (40) ◽  
pp. 979-987 ◽  
Author(s):  
L. Pellis ◽  
N. M. Ferguson ◽  
C. Fraser

The basic reproduction number R 0 is one of the most important concepts in modern infectious disease epidemiology. However, for more realistic and more complex models than those assuming homogeneous mixing in the population, other threshold quantities can be defined that are sometimes more useful and easily derived in terms of model parameters. In this paper, we present a model for the spread of a permanently immunizing infection in a population socially structured into households and workplaces/schools, and we propose and discuss a new household-to-household reproduction number R H for it. We show how R H overcomes some of the limitations of a previously proposed threshold parameter, and we highlight its relationship with the effort required to control an epidemic when interventions are targeted at randomly selected households.

Author(s):  
Odo Diekmann ◽  
Hans Heesterbeek ◽  
Tom Britton

The basic reproduction number (or ratio) R₀ is arguably the most important quantity in infectious disease epidemiology. It is among the quantities most urgently estimated for infectious diseases in outbreak situations, and its value provides insight when designing control interventions for established infections. From a theoretical point of view R₀ plays a vital role in the analysis of, and consequent insight from, infectious disease models. There is hardly a paper on dynamic epidemiological models in the literature where R₀ does not play a role. R₀ is defined as the average number of new cases of an infection caused by one typical infected individual, in a population consisting of susceptibles only. This chapter shows how R₀ can be characterized mathematically and provides detailed examples of its calculation in terms of parameters of epidemiological models, culminating in a set of algorithms (or “recipes”) for the calculation for compartmental epidemic systems.


2009 ◽  
Vol 7 (47) ◽  
pp. 873-885 ◽  
Author(s):  
O. Diekmann ◽  
J. A. P. Heesterbeek ◽  
M. G. Roberts

The basic reproduction number ℛ 0 is arguably the most important quantity in infectious disease epidemiology. The next-generation matrix (NGM) is the natural basis for the definition and calculation of ℛ 0 where finitely many different categories of individuals are recognized. We clear up confusion that has been around in the literature concerning the construction of this matrix, specifically for the most frequently used so-called compartmental models. We present a detailed easy recipe for the construction of the NGM from basic ingredients derived directly from the specifications of the model. We show that two related matrices exist which we define to be the NGM with large domain and the NGM with small domain . The three matrices together reflect the range of possibilities encountered in the literature for the characterization of ℛ 0 . We show how they are connected and how their construction follows from the basic model ingredients, and establish that they have the same non-zero eigenvalues, the largest of which is the basic reproduction number ℛ 0 . Although we present formal recipes based on linear algebra, we encourage the construction of the NGM by way of direct epidemiological reasoning, using the clear interpretation of the elements of the NGM and of the model ingredients. We present a selection of examples as a practical guide to our methods. In the appendix we present an elementary but complete proof that ℛ 0 defined as the dominant eigenvalue of the NGM for compartmental systems and the Malthusian parameter r , the real-time exponential growth rate in the early phase of an outbreak, are connected by the properties that ℛ 0 > 1 if and only if r > 0, and ℛ 0 = 1 if and only if r = 0.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Lian Duan ◽  
Lihong Huang ◽  
Chuangxia Huang

<p style='text-indent:20px;'>In this paper, we are concerned with the dynamics of a diffusive SIRI epidemic model with heterogeneous parameters and distinct dispersal rates for the susceptible and infected individuals. We first establish the basic properties of solutions to the model, and then identify the basic reproduction number <inline-formula><tex-math id="M1">\begin{document}$ \mathscr{R}_{0} $\end{document}</tex-math></inline-formula> which serves as a threshold parameter that predicts whether epidemics will persist or become globally extinct. Moreover, we study the asymptotic profiles of the positive steady state as the dispersal rate of the susceptible or infected individuals approaches zero. Our analytical results reveal that the epidemics can be extinct by limiting the movement of the susceptible individuals, and the infected individuals concentrate on certain points in some circumstances when limiting their mobility.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Chaojian Shen ◽  
Mingtao Li ◽  
Wei Zhang ◽  
Ying Yi ◽  
Youming Wang ◽  
...  

Streptococcosis is one of the major infectious and contagious bacterial diseases for swine farm in southern China. The influence of various control measures on the outbreaks and transmission ofS. suisis not currently known. In this study, in order to explore effective control and prevention measures we studied a deterministic dynamic model with stage structure forS. suis. The basic reproduction numberℛ0is identified and global dynamics are completely determined byℛ0. It shows that ifℛ0<1, the disease-free equilibrium is globally stable and the disease dies out, whereas ifℛ0>1, there is a unique endemic equilibrium which is globally stable and thus the disease persists in the population. The model simulations well agree with new clinical cases and the basic reproduction number of this model is about 1.1333. Some sensitivity analyses ofℛ0in terms of the model parameters are given. Our study demonstrates that combination of vaccination and disinfection of the environment are the useful control strategy forS. suis.


2020 ◽  
Author(s):  
Marek Kochańczyk ◽  
Frederic Grabowski ◽  
Tomasz Lipniacki

Transmission of infectious diseases is characterized by the basic reproduction number R0, a metric used to assess the threat posed by an outbreak and inform proportionate preventive decision-making. Based on individual case reports from the initial stage of the coronavirus disease 2019 epidemic, R0 is often estimated to range between 2 and 4. In this report, we show that a SEIR model that properly accounts for the distribution of the incubation period suggests that R0 lie in the range 4.4–11.7. This estimate is based on the doubling time observed in the near-exponential phases of the epidemic spread in China, United States, and six European countries. To support our empirical estimation, we analyze stochastic trajectories of the SEIR model showing that in the presence of super-spreaders the calculations based on individual cases reported during the initial phase of the outbreak systematically overestimate the doubling time and thus underestimate the actual value of R0.


1998 ◽  
Vol 121 (2) ◽  
pp. 309-324 ◽  
Author(s):  
E. VYNNYCKY ◽  
P. E. M. FINE

The net and basic reproduction numbers are among the most widely-applied concepts in infectious disease epidemiology. A net reproduction number (the average number of secondary infectious cases resulting from each case in a given population) of above 1 is conventionally associated with an increase in incidence; the basic reproduction number (defined analogously for a ‘totally susceptible’ population) provides a standard measure of the ‘transmission potential’ of an infection. Using a model of the epidemiology of tuberculosis in England and Wales since 1900, we demonstrate that these measures are difficult to apply if disease can follow reinfection, and that they lose their conventional interpretations if important epidemiological parameters, such as the rate of contact between individuals, change over the time interval between successive cases in a chain of transmission (the serial interval).The net reproduction number for tuberculosis in England and Wales appears to have been approximately 1 from 1900 until 1950, despite concurrent declines in morbidity and mortality rates, and it declined rapidly in the second half of this century. The basic reproduction number declined from about 3 in 1900, reached 2 by 1950, and first fell below 1 in about 1960. Reductions in effective contact between individuals over this period, measured in terms of the average number of individuals to whom each case could transmit the infection, meant that the conventional basic reproduction number measure (which does not consider subsequent changes in epidemiological parameters) for a given year failed to reflect the ‘actual transmission potential’ of the infection. This latter property is better described by a variant of the conventional measure which takes secular trends in contact into account. These results are relevant for the interpretation of trends in any infectious disease for which epidemiological parameters change over time periods comparable to the infectious period, incubation period or serial interval.


2017 ◽  
Author(s):  
Yu-Han Kao ◽  
Marisa C. Eisenberg

AbstractBackgroundMathematical modeling has an extensive history in vector-borne disease epidemiology, and is increasingly used for prediction, intervention design, and understanding mechanisms. Many of these studies rely on parameter estimation to link models and data, and to tailor predictions and counterfactuals to specific settings. However, few studies have formally evaluated whether vector-borne disease models can properly estimate the parameters of interest given the constraints of a particular dataset.Methodology/Principle FindingsIdentifiability methods allow us to examine whether model parameters can be estimated uniquely—a lack of consideration of such issues can result in misleading or incorrect parameter estimates and model predictions. Here, we evaluate both structural (theoretical) and practical identifiability of a commonly used compartmental model of mosquitoborne disease, using 2010 dengue epidemic in Taiwan as a case study. We show that while the model is structurally identifiable, it is practically unidentifiable under a range of human and mosquito time series measurement scenarios. In particular, the transmission parameters form a practically identifiable combination and thus cannot be estimated separately, which can lead to incorrect predictions of the effects of interventions. However, in spite of unidentifiability of the individual parameters, the basic reproduction number was successfully estimated across the unidentifiable parameter ranges. These identifiability issues can be resolved by directly measuring several additional human and mosquito life-cycle parameters both experimentally and in the field.ConclusionsWhile we only consider the simplest case for the model, without explicit environmental drivers, we show that a commonly used model of vector-borne disease is unidentifiable from human and mosquito incidence data, making it difficult or impossible to estimate parameters or assess intervention strategies. This work illustrates the importance of examining identifiability when linking models with data to make predictions, and particularly highlights the importance of combining experimental, field, and case data if we are to successfully estimate epidemiological and ecological parameters using models.Author SummaryMathematical models have seen increasing use in understanding transmission processes, developing interventions, and predicting disease incidence and prevalence. Vector-borne diseases in particular present both a challenge and an opportunity for modeling, due to the complex interactions between host and vector species. A key step in many of these studies is connecting transmission models with data to infer parameters and make useful predictions, which requires careful consideration of identifiability and uncertainty of the model parameters. Whether due to intrinsic limitations of the model structure, or practical limitations of the data collected, is common that many different parameter values may yield the same or very similar fits to the data, making it impossible to successfully estimate the parameters. This issue of parameter unidentifiability can have broad implications for our ability to draw conclusions from mechanistic models—in some cases making it difficult or impossible to generate specific predictions, forecasts, or parameter estimates from a given model and data. Here, we evaluate these questions for a commonly-used model of vectorborne disease, examining how parameter uncertainty and unidentifiability can affect intervention predictions, estimation of the basic reproduction number, and other public health conclusions drawn from the model.


Sign in / Sign up

Export Citation Format

Share Document