scholarly journals The construction of next-generation matrices for compartmental epidemic models

2009 ◽  
Vol 7 (47) ◽  
pp. 873-885 ◽  
Author(s):  
O. Diekmann ◽  
J. A. P. Heesterbeek ◽  
M. G. Roberts

The basic reproduction number ℛ 0 is arguably the most important quantity in infectious disease epidemiology. The next-generation matrix (NGM) is the natural basis for the definition and calculation of ℛ 0 where finitely many different categories of individuals are recognized. We clear up confusion that has been around in the literature concerning the construction of this matrix, specifically for the most frequently used so-called compartmental models. We present a detailed easy recipe for the construction of the NGM from basic ingredients derived directly from the specifications of the model. We show that two related matrices exist which we define to be the NGM with large domain and the NGM with small domain . The three matrices together reflect the range of possibilities encountered in the literature for the characterization of ℛ 0 . We show how they are connected and how their construction follows from the basic model ingredients, and establish that they have the same non-zero eigenvalues, the largest of which is the basic reproduction number ℛ 0 . Although we present formal recipes based on linear algebra, we encourage the construction of the NGM by way of direct epidemiological reasoning, using the clear interpretation of the elements of the NGM and of the model ingredients. We present a selection of examples as a practical guide to our methods. In the appendix we present an elementary but complete proof that ℛ 0 defined as the dominant eigenvalue of the NGM for compartmental systems and the Malthusian parameter r , the real-time exponential growth rate in the early phase of an outbreak, are connected by the properties that ℛ 0 > 1 if and only if r > 0, and ℛ 0 = 1 if and only if r = 0.

Author(s):  
Odo Diekmann ◽  
Hans Heesterbeek ◽  
Tom Britton

The basic reproduction number (or ratio) R₀ is arguably the most important quantity in infectious disease epidemiology. It is among the quantities most urgently estimated for infectious diseases in outbreak situations, and its value provides insight when designing control interventions for established infections. From a theoretical point of view R₀ plays a vital role in the analysis of, and consequent insight from, infectious disease models. There is hardly a paper on dynamic epidemiological models in the literature where R₀ does not play a role. R₀ is defined as the average number of new cases of an infection caused by one typical infected individual, in a population consisting of susceptibles only. This chapter shows how R₀ can be characterized mathematically and provides detailed examples of its calculation in terms of parameters of epidemiological models, culminating in a set of algorithms (or “recipes”) for the calculation for compartmental epidemic systems.


2009 ◽  
Vol 6 (40) ◽  
pp. 979-987 ◽  
Author(s):  
L. Pellis ◽  
N. M. Ferguson ◽  
C. Fraser

The basic reproduction number R 0 is one of the most important concepts in modern infectious disease epidemiology. However, for more realistic and more complex models than those assuming homogeneous mixing in the population, other threshold quantities can be defined that are sometimes more useful and easily derived in terms of model parameters. In this paper, we present a model for the spread of a permanently immunizing infection in a population socially structured into households and workplaces/schools, and we propose and discuss a new household-to-household reproduction number R H for it. We show how R H overcomes some of the limitations of a previously proposed threshold parameter, and we highlight its relationship with the effort required to control an epidemic when interventions are targeted at randomly selected households.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 86-100
Author(s):  
Nita H. Shah ◽  
Ankush H. Suthar ◽  
Ekta N. Jayswal ◽  
Ankit Sikarwar

In this article, a time-dependent susceptible-infected-recovered (SIR) model is constructed to investigate the transmission rate of COVID-19 in various regions of India. The model included the fundamental parameters on which the transmission rate of the infection is dependent, like the population density, contact rate, recovery rate, and intensity of the infection in the respective region. Looking at the great diversity in different geographic locations in India, we determined to calculate the basic reproduction number for all Indian districts based on the COVID-19 data till 7 July 2020. By preparing district-wise spatial distribution maps with the help of ArcGIS 10.2, the model was employed to show the effect of complete lockdown on the transmission rate of the COVID-19 infection in Indian districts. Moreover, with the model's transformation to the fractional ordered dynamical system, we found that the nature of the proposed SIR model is different for the different order of the systems. The sensitivity analysis of the basic reproduction number is done graphically which forecasts the change in the transmission rate of COVID-19 infection with change in different parameters. In the numerical simulation section, oscillations and variations in the model compartments are shown for two different situations, with and without lockdown.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Dipo Aldila ◽  
Brenda M. Samiadji ◽  
Gracia M. Simorangkir ◽  
Sarbaz H. A. Khosnaw ◽  
Muhammad Shahzad

Abstract Objective Several essential factors have played a crucial role in the spreading mechanism of COVID-19 (Coronavirus disease 2019) in the human population. These factors include undetected cases, asymptomatic cases, and several non-pharmaceutical interventions. Because of the rapid spread of COVID-19 worldwide, understanding the significance of these factors is crucial in determining whether COVID-19 will be eradicated or persist in the population. Hence, in this study, we establish a new mathematical model to predict the spread of COVID-19 considering mentioned factors. Results Infection detection and vaccination have the potential to eradicate COVID-19 from Jakarta. From the sensitivity analysis, we find that rapid testing is crucial in reducing the basic reproduction number when COVID-19 is endemic in the population rather than contact trace. Furthermore, our results indicate that a vaccination strategy has the potential to relax social distancing rules, while maintaining the basic reproduction number at the minimum possible, and also eradicate COVID-19 from the population with a higher vaccination rate. In conclusion, our model proposed a mathematical model that can be used by Jakarta’s government to relax social distancing policy by relying on future COVID-19 vaccine potential.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Abdul Kuddus ◽  
M. Mohiuddin ◽  
Azizur Rahman

AbstractAlthough the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}<1)$$ ( i . e . R 0 < 1 ) . This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{ R}}_{0}<1)$$ ( i . e . R 0 < 1 ) , and if greater than one $$(\mathrm{i}.\mathrm{e}. \, \, {\mathrm{R}}_{0}>1)$$ ( i . e . R 0 > 1 ) epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on $${\mathrm{R}}_{0}$$ R 0 . The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute $${\mathrm{R}}_{0}$$ R 0 and measles prevalence $$\left({\mathrm{I}}^{*}\right)$$ I ∗ with respect to the estimated and fitted model parameters. We found that the transmission rate $$(\upbeta )$$ ( β ) had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Bhagya Jyoti Nath ◽  
Kaushik Dehingia ◽  
Vishnu Narayan Mishra ◽  
Yu-Ming Chu ◽  
Hemanta Kumar Sarmah

AbstractIn this paper, we have mathematically analyzed a within-host model of SARS-CoV-2 which is used by Li et al. in the paper “The within-host viral kinetics of SARS-CoV-2” published in (Math. Biosci. Eng. 17(4):2853–2861, 2020). Important properties of the model, like nonnegativity of solutions and their boundedness, are established. Also, we have calculated the basic reproduction number which is an important parameter in the infection models. From stability analysis of the model, it is found that stability of the biologically feasible steady states are determined by the basic reproduction number $(\chi _{0})$ ( χ 0 ) . Numerical simulations are done in order to substantiate analytical results. A biological implication from this study is that a COVID-19 patient with less than one basic reproduction ratio can automatically recover from the infection.


Sign in / Sign up

Export Citation Format

Share Document