scholarly journals The feasibility of coherent energy transfer in microtubules

2014 ◽  
Vol 11 (100) ◽  
pp. 20140677 ◽  
Author(s):  
Travis John Adrian Craddock ◽  
Douglas Friesen ◽  
Jonathan Mane ◽  
Stuart Hameroff ◽  
Jack A. Tuszynski

It was once purported that biological systems were far too ‘warm and wet’ to support quantum phenomena mainly owing to thermal effects disrupting quantum coherence. However, recent experimental results and theoretical analyses have shown that thermal energy may assist, rather than disrupt, quantum coherent transport, especially in the ‘dry’ hydrophobic interiors of biomolecules. Specifically, evidence has been accumulating for the necessary involvement of quantum coherent energy transfer between uniquely arranged chromophores in light harvesting photosynthetic complexes. The ‘tubulin’ subunit proteins, which comprise microtubules, also possess a distinct architecture of chromophores, namely aromatic amino acids, including tryptophan. The geometry and dipolar properties of these aromatics are similar to those found in photosynthetic units indicating that tubulin may support coherent energy transfer. Tubulin aggregated into microtubule geometric lattices may support such energy transfer, which could be important for biological signalling and communication essential to living processes. Here, we perform a computational investigation of energy transfer between chromophoric amino acids in tubulin via dipole excitations coupled to the surrounding thermal environment. We present the spatial structure and energetic properties of the tryptophan residues in the microtubule constituent protein tubulin. Plausibility arguments for the conditions favouring a quantum mechanism of signal propagation along a microtubule are provided. Overall, we find that coherent energy transfer in tubulin and microtubules is biologically feasible.

2008 ◽  
Vol 07 (01) ◽  
pp. 91-102
Author(s):  
LEONARDO R. LAREO ◽  
JANNETH GONZÁLEZ

The transfer of energy perturbations within protein structure is an important phenomenon in many biological processes. In particular, the transfer of energy perturbations within a molecule in the absence of electron transfer is critical to the understanding of such processes as signaling involving receptors, channels, and enzymes among others, and to the design and development of relevant conducting materials. In this work, we have proposed a mechanism to explain this nonradiative, nonelectron energy transfer based on the π-orbital interactions of aromatic amino acids. Additionally, some theoretical background and possible computational approaches are presented as support for the proposal.


2007 ◽  
Vol 45 (2) ◽  
pp. 266-271 ◽  
Author(s):  
Y. G. Qu ◽  
X. C. Qin ◽  
W. F. Wang ◽  
L. B. Li ◽  
T. Y. Kuang

2014 ◽  
Vol 2 (47) ◽  
pp. 10157-10163 ◽  
Author(s):  
Chanchal Hazra ◽  
Tuhin Samanta ◽  
Venkataramanan Mahalingam

In this article, we report for the first time the use of Ln3+-doped nanocrystals to detect aromatic amino acids (AAs) up to nanomolar concentration.


2019 ◽  
Author(s):  
A Craig ◽  
N Kolks ◽  
E Urusova ◽  
BD Zlatopolskiy ◽  
B Neumaier

2018 ◽  
Author(s):  
Golaleh Asghari ◽  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Parvin Mirmiran ◽  
Mehdi Hedayati ◽  
...  

2018 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti ◽  
Chandra Kanth P. ◽  
Dhruvi Shah ◽  
Vivek Shinh Kshatriya ◽  
...  

We report for the very first time self-assembly of Cysteine and Methionine to discrenible strucutres under neutral condition. To get insights into the structure formation, thioflavin T and Congo red binding assays were done which revealed that aggregates may not have amyloid like characteristics. The nature of interactions which lead to such self-assemblies was purported by coincubating assemblies in urea and mercaptoethanol. Further interaction of aggregates with short amyloidogenic dipeptide diphenylalanine (FF) was assessed. While cysteine aggregates completely disrupted FF fibres, methionine albeit triggered fibrillation. The cytotoxicity assays of cysteine and methionine structures were performed on Human Neuroblastoma IMR-32 cells which suggested that aggregates are not cytotoxic in nature and thus, may not have amyloid like etiology. The results presented in the manuscript are striking, since to the best of our knowledge,this is the first report which demonstrates that even non-aromatic amino acids (cysteine and methionine) can undergo spontaneous self-assembly to form ordered aggregates.


Sign in / Sign up

Export Citation Format

Share Document