scholarly journals Biomechanical rupture risk assessment of abdominal aortic aneurysms based on a novel probabilistic rupture risk index

2015 ◽  
Vol 12 (113) ◽  
pp. 20150852 ◽  
Author(s):  
Stanislav Polzer ◽  
T. Christian Gasser

A rupture risk assessment is critical to the clinical treatment of abdominal aortic aneurysm (AAA) patients. The biomechanical AAA rupture risk assessment quantitatively integrates many known AAA rupture risk factors but the variability of risk predictions due to model input uncertainties remains a challenging limitation. This study derives a probabilistic rupture risk index (PRRI). Specifically, the uncertainties in AAA wall thickness and wall strength were considered, and wall stress was predicted with a state-of-the-art deterministic biomechanical model. The discriminative power of PRRI was tested in a diameter-matched cohort of ruptured ( n = 7) and intact ( n = 7) AAAs and compared to alternative risk assessment methods. Computed PRRI at 1.5 mean arterial pressure was significantly ( p = 0.041) higher in ruptured AAAs (20.21(s.d. 14.15%)) than in intact AAAs (3.71(s.d. 5.77)%). PRRI showed a high sensitivity and specificity (discriminative power of 0.837) to discriminate between ruptured and intact AAA cases. The underlying statistical representation of stochastic data of wall thickness, wall strength and peak wall stress had only negligible effects on PRRI computations. Uncertainties in AAA wall stress predictions, the wide range of reported wall strength and the stochastic nature of failure motivate a probabilistic rupture risk assessment. Advanced AAA biomechanical modelling paired with a probabilistic rupture index definition as known from engineering risk assessment seems to be superior to a purely deterministic approach.

Author(s):  
M. W. Gee ◽  
A. Maier ◽  
C. Reeps ◽  
H.-H. Eckstein ◽  
W. A. Wall

Increased blood pressure and arterial wall degradation lead to formation of abdominal aortic aneurysms (AAA). As elective AAA surgery is not without potential risk it is common practice to balance risk of rupture against risk of intervention. Usually a max. AAA diameter is the clinically accepted parameter where diameter > 55mm indicates intervention. However, it has been shown that computational wall stress analyses is a better indicator for rupture risk, e.g. by Fillinger et al 2003. In the presented study we use highly advanced FEA and statistical wall strength models to investigate whether current computational biomechanics analyses yields significant results when applied to groups of AAA with matched diameter in the decision-critical regime of approx. 55mm. For this purpose diameter matched groups of asymptomatic and ruptured/symptomatic AAA are examined and significance of computational rupture risk predictors is studied.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Eric Shang ◽  
Grace Wang ◽  
Ronald Fairman ◽  
Benjamin Jackson

Objective: Women with abdominal aortic aneurysms (AAA) exhibit more rapid aneurysm growth and greater rupture risk at equivalent diameters relative to men. Evidence suggests that biomechanical peak wall stress (PWS) derived from finite element analysis of AAAs is a superior predictor of rupture compared to maximum transverse diameter (MTD). This study aimed to investigate differences in the calculated PWS of AAAs between men and women. Method: Men (n=35) and women (n=35) with infrarenal AAAs with 45-55mm MTD undergoing CTA were identified. Customized image processing algorithms extracted patient-specific AAA geometries from raw DICOM images. The resulting aortic reconstructions incorporated patient-specific and regionally resolved aortic wall thickness, intraluminal thrombus, and wall calcifications. Aortic models were loaded with 120mmHg blood pressure using commercially available FEA solvers. Results: Peak wall stress was found to be significantly higher in women (299±51 vs 257±53 kPA, P=0.001, see Figure). Neither MTD (50.5±3.1 vs 49.8±2.9 mm, P=0.34), mean aortic wall thickness (2.38±0.52 vs 2.34±0.50 mm, P=0.69), nor wall thickness at location of PWS (2.36±0.60 vs 2.20±0.46 mm, P=0.20) varied by sex. While there were no sex-associated differences in aneurysm volume (86.6±27.0 vs 94.8±25.5 cm 3 , P=0.76) or intraluminal thrombus volume (14.2±11.7 vs 16.3±13.4 mm, P=0.33), women’s AAAs had significantly increased maximum Gaussian curvature (0.032±0.011 vs 0.025±0.015 mm -2 , P=0.03). Conclusion: Comparably sized AAAs in women were shown to have significantly higher peak wall stress. Maximum gaussian curvature, a measure of aneurysm morphology, was significantly different between the two groups. These results suggest that men and women possess distinct aneurysm geometries, and that PWS-derived rupture risk prediction may provide a more reliable estimator of rupture risk in all patients.


2020 ◽  
Vol 7 (3) ◽  
pp. 79
Author(s):  
Stephen J. Haller ◽  
Amir F. Azarbal ◽  
Sandra Rugonyi

Computational biomechanics via finite element analysis (FEA) has long promised a means of assessing patient-specific abdominal aortic aneurysm (AAA) rupture risk with greater efficacy than current clinically used size-based criteria. The pursuit stems from the notion that AAA rupture occurs when wall stress exceeds wall strength. Quantification of peak (maximum) wall stress (PWS) has been at the cornerstone of this research, with numerous studies having demonstrated that PWS better differentiates ruptured AAAs from non-ruptured AAAs. In contrast to wall stress models, which have become progressively more sophisticated, there has been relatively little progress in estimating patient-specific wall strength. This is because wall strength cannot be inferred non-invasively, and measurements from excised patient tissues show a large spectrum of wall strength values. In this review, we highlight studies that investigated the relationship between biomechanics and AAA rupture risk. We conclude that combining wall stress and wall strength approximations should provide better estimations of AAA rupture risk. However, before personalized biomechanical AAA risk assessment can become a reality, better methods for estimating patient-specific wall properties or surrogate markers of aortic wall degradation are needed. Artificial intelligence methods can be key in stratifying patients, leading to personalized AAA risk assessment.


2019 ◽  
Vol 317 (5) ◽  
pp. H981-H990 ◽  
Author(s):  
Daniel J. Romary ◽  
Alycia G. Berman ◽  
Craig J. Goergen

An abdominal aortic aneurysm (AAA), defined as a pathological expansion of the largest artery in the abdomen, is a common vascular disease that frequently leads to death if rupture occurs. Once diagnosed, clinicians typically evaluate the rupture risk based on maximum diameter of the aneurysm, a limited metric that is not accurate for all patients. In this study, we worked to evaluate additional distinguishing factors between growing and stable murine aneurysms toward the aim of eventually improving clinical rupture risk assessment. With the use of a relatively new mouse model that combines surgical application of topical elastase to cause initial aortic expansion and a lysyl oxidase inhibitor, β-aminopropionitrile (BAPN), in the drinking water, we were able to create large AAAs that expanded over 28 days. We further sought to develop and demonstrate applications of advanced imaging approaches, including four-dimensional ultrasound (4DUS), to evaluate alternative geometric and biomechanical parameters between 1) growing AAAs, 2) stable AAAs, and 3) nonaneurysmal control mice. Our study confirmed the reproducibility of this murine model and found reduced circumferential strain values, greater tortuosity, and increased elastin degradation in mice with aneurysms. We also found that expanding murine AAAs had increased peak wall stress and surface area per length compared with stable aneurysms. The results from this work provide clear growth patterns associated with BAPN-elastase murine aneurysms and demonstrate the capabilities of high-frequency ultrasound. These data could help lay the groundwork for improving insight into clinical prediction of AAA expansion. NEW & NOTEWORTHY This work characterizes a relatively new murine model of abdominal aortic aneurysms (AAAs) by quantifying vascular strain, stress, and geometry. Furthermore, Green-Lagrange strain was calculated with a novel mapping approach using four-dimensional ultrasound. We also compared growing and stable AAAs, finding peak wall stress and surface area per length to be most indicative of growth. In all AAAs, strain and elastin health declined, whereas tortuosity increased.


PLoS ONE ◽  
2018 ◽  
Vol 13 (8) ◽  
pp. e0202672 ◽  
Author(s):  
Eva L. Leemans ◽  
Tineke P. Willems ◽  
Cornelis H. Slump ◽  
Maarten J. van der Laan ◽  
Clark J. Zeebregts

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Tejas Canchi ◽  
Sourav S. Patnaik ◽  
Hong N. Nguyen ◽  
E. Y. K. Ng ◽  
Sriram Narayanan ◽  
...  

Abstract In this work, we provide a quantitative assessment of the biomechanical and geometric features that characterize abdominal aortic aneurysm (AAA) models generated from 19 Asian and 19 Caucasian diameter-matched AAA patients. 3D patient-specific finite element models were generated and used to compute peak wall stress (PWS), 99th percentile wall stress (99th WS), and spatially averaged wall stress (AWS) for each AAA. In addition, 51 global geometric indices were calculated, which quantify the wall thickness, shape, and curvature of each AAA. The indices were correlated with 99th WS (the only biomechanical metric that exhibited significant association with geometric indices) using Spearman's correlation and subsequently with multivariate linear regression using backward elimination. For the Asian AAA group, 99th WS was highly correlated (R2 = 0.77) with three geometric indices, namely tortuosity, intraluminal thrombus volume, and area-averaged Gaussian curvature. Similarly, 99th WS in the Caucasian AAA group was highly correlated (R2 = 0.87) with six geometric indices, namely maximum AAA diameter, distal neck diameter, diameter–height ratio, minimum wall thickness variance, mode of the wall thickness variance, and area-averaged Gaussian curvature. Significant differences were found between the two groups for ten geometric indices; however, no differences were found for any of their respective biomechanical attributes. Assuming maximum AAA diameter as the most predictive metric for wall stress was found to be imprecise: 24% and 28% accuracy for the Asian and Caucasian groups, respectively. This investigation reveals that geometric indices other than maximum AAA diameter can serve as predictors of wall stress, and potentially for assessment of aneurysm rupture risk, in the Asian and Caucasian AAA populations.


Author(s):  
Evelyne van Dam ◽  
Marcel Rutten ◽  
Frans van de Vosse

Rupture risk of abdominal aortic aneurysms (AAA) based on wall stress analysis may be superior to the currently used diameter-based rupture risk prediction [4; 5; 6; 7]. In patient specific computational models for wall stress analysis, the geometry of the aneurysm is obtained from CT or MR images. The wall thickness and mechanical properties are mostly assumed to be homogeneous. The pathological AAA vessel wall may contain collageneous areas, but also calcifications, cholesterol crystals and large amounts of fat cells. No research has yet focused yet on the differences in mechanical properties of the components present within the degrading AAA vessel wall.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242097
Author(s):  
Lukas Bruder ◽  
Jaroslav Pelisek ◽  
Hans-Henning Eckstein ◽  
Michael W. Gee

We present a data-informed, highly personalized, probabilistic approach for the quantification of abdominal aortic aneurysm (AAA) rupture risk. Our novel framework builds upon a comprehensive database of tensile test results that were carried out on 305 AAA tissue samples from 139 patients, as well as corresponding non-invasively and clinically accessible patient-specific data. Based on this, a multivariate regression model is created to obtain a probabilistic description of personalized vessel wall properties associated with a prospective AAA patient. We formulate a probabilistic rupture risk index that consistently incorporates the available statistical information and generalizes existing approaches. For the efficient evaluation of this index, a flexible Kriging-based surrogate model with an active training process is proposed. In a case-control study, the methodology is applied on a total of 36 retrospective, diameter matched asymptomatic (group 1, n = 18) and known symptomatic/ruptured (group 2, n = 18) cohort of AAA patients. Finally, we show its efficacy to discriminate between the two groups and demonstrate competitive performance in comparison to existing deterministic and probabilistic biomechanical indices.


Sign in / Sign up

Export Citation Format

Share Document