scholarly journals Self-organization of chemoattractant waves in Dictyostelium depends on F-actin and cell–substrate adhesion

2016 ◽  
Vol 13 (119) ◽  
pp. 20160233 ◽  
Author(s):  
Fumihito Fukujin ◽  
Akihiko Nakajima ◽  
Nao Shimada ◽  
Satoshi Sawai

In the social amoeba Dictyostelium discoideum , travelling waves of extracellular cyclic adenosine monophosphate (cAMP) self-organize in cell populations and direct aggregation of individual cells to form multicellular fruiting bodies. In contrast to the large body of studies that addressed how movement of cells is determined by spatial and temporal cues encoded in the dynamic cAMP gradients, how cell mechanics affect the formation of a self-generated chemoattractant field has received less attention. Here, we show, by live cell imaging analysis, that the periodicity of the synchronized cAMP waves increases in cells treated with the actin inhibitor latrunculin. Detail analysis of the extracellular cAMP-induced transients of cytosolic cAMP (cAMP relay response) in well-isolated cells demonstrated that their amplitude and duration were markedly reduced in latrunculin-treated cells. Similarly, in cells strongly adhered to a poly- l -lysine-coated surface, the response was suppressed, and the periodicity of the population-level oscillations was markedly lengthened. Our results suggest that cortical F-actin is dispensable for the basic low amplitude relay response but essential for its full amplification and that this enhanced response is necessary to establish high-frequency signalling centres. The observed F-actin dependence may prevent aggregation centres from establishing in microenvironments that are incompatible with cell migration.

Open Biology ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 190314 ◽  
Author(s):  
Francesca Rizzelli ◽  
Maria Grazia Malabarba ◽  
Sara Sigismund ◽  
Marina Mapelli

Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell–substrate adhesion, cell–cell contacts and extracellular signalling events regulating proliferation.


2020 ◽  
Vol 10 (4) ◽  
pp. 462-468
Author(s):  
Xuan Zhou ◽  
Xin Zhou ◽  
Yichen Du ◽  
Xiaohua Shi ◽  
Pan You ◽  
...  

Regulating cell-substrate adhesion is of fundamental importance in biomaterial design and development. While an increasing number of approaches are being developed to quantify cell adhesion strength, only a fraction of these techniques provide measurements that are simple and sensitive at the living cell population level. In our previous study, the expression of adhesion-associated proteins in fibroblasts was found to change on ion-implanted silicone rubber; however, the actual effects of the modified surfaces on cellular mechanical properties remain to be probed. Here, we proposed a convenient method to compare the cell adhesion strength on various surfaces, for multiple adhesion periods and with different cell types. This method requires only common laboratory equipment. In addition, we introduced a new parameter, ECS50, which is appropriate for screening optimum centrifugal conditions when the cell affinity of the surface as a control is initially unknown. This parameter is helpful for further exploration of cell affinity on all the biomaterials of interest. The results demonstrate that this centrifugation assay is simple, efficient and adaptable in investigating the overall adhesion strength of living cells under various conditions, and therefore, it is a valid way to develop adhesion-controlled biointerface materials in the future.


1981 ◽  
Vol 1 (3) ◽  
pp. 185-192 ◽  
Author(s):  
Miklos Degre ◽  
Lowell A. Glasgow

Author(s):  
Marco Mongillo ◽  
Anna Terrin ◽  
Sandrine Evellin ◽  
Valentina Lissandron ◽  
Manuela Zaccolo

2019 ◽  
Author(s):  
Bella Grigorenko ◽  
Igor Polyakov ◽  
Alexander Nemukhin

<p>We report a mechanism of adenosine triphosphate (ATP) to cyclic adenosine monophosphate (cAMP) conversion by the mammalian type V adenylyl cyclase revealed in molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations. We characterize a set of computationally derived enzyme-substrate (ES) structures showing an important role of coordination shells of magnesium ions in the solvent accessible active site. Several stable six-fold coordination shells of Mg<sub>A</sub><sup>2+ </sup>are observed in MD simulations of ES complexes. In the lowest energy ES conformation, the coordination shell of Mg<sub>A</sub><sup>2+ </sup>does not include the O<sub>δ1</sub> atom of the conserved Asp440 residue. Starting from this conformation, a one-step reaction mechanism is characterized which includes proton transfer from the ribose O<sup>3'</sup>H<sup>3' </sup>group in ATP to Asp440 via a shuttling water molecule and P<sup>A</sup>-O<sup>3A</sup> bond cleavage and O<sup>3'</sup>-P<sup>A</sup> bond formation. The energy profile of this route is consistent with the observed reaction kinetics. In a higher energy ES conformation, Mg<sub>A</sub><sup>2+</sup> is bound to the O<sub>δ1</sub>(Asp440) atom as suggested in the relevant crystal structure of the protein with a substrate analog. The computed energy profile initiated by this ES is characterized by higher energy expenses to complete the reaction. Consistently with experimental data, we show that the Asp440Ala mutant of the enzyme should exhibit a reduced but retained activity. All considered reaction pathways include proton wires from the O<sup>3'</sup>H<sup>3' </sup>group via shuttling water molecules. </p>


2019 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Chen Lei ◽  
Pan Xiang ◽  
Shen Yonggang ◽  
Song Kai ◽  
Zhong Xingguo ◽  
...  

The aim of this study was to determine whether polydatin, a glucoside of resveratrol isolated from the root of Polygonum cuspidatum, warranted development as a potential therapeutic for ameliorating the pain originating from gallbladder spasm disorders and the underlying mechanisms. Guinea pig gallbladder smooth muscles were treated with polydatin and specific inhibitors to explore the mechanisms underpinning polydatin-induced relaxation of carbachol-precontracted guinea pig gallbladder. Our results shown that polydatin relaxed carbachol-induced contraction in a dose-dependent manner through the nitric oxide/cyclic guanosine monophosphate/protein kinase G and the cyclic adenosine monophosphate/protein kinase A signaling pathways as well as the myosin light chain kinase and potassium channels. Our findings suggested that there was value in further exploring the potential therapeutic use of polydatin in gallbladder spasm disorders.


Sign in / Sign up

Export Citation Format

Share Document