scholarly journals The crosstalk between microtubules, actin and membranes shapes cell division

Open Biology ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 190314 ◽  
Author(s):  
Francesca Rizzelli ◽  
Maria Grazia Malabarba ◽  
Sara Sigismund ◽  
Marina Mapelli

Mitotic progression is orchestrated by morphological and mechanical changes promoted by the coordinated activities of the microtubule (MT) cytoskeleton, the actin cytoskeleton and the plasma membrane (PM). MTs assemble the mitotic spindle, which assists sister chromatid separation, and contact the rigid and tensile actomyosin cortex rounded-up underneath the PM. Here, we highlight the dynamic crosstalk between MTs, actin and cell membranes during mitosis, and discuss the molecular connections between them. We also summarize recent views on how MT traction forces, the actomyosin cortex and membrane trafficking contribute to spindle positioning in isolated cells in culture and in epithelial sheets. Finally, we describe the emerging role of membrane trafficking in synchronizing actomyosin tension and cell shape changes with cell–substrate adhesion, cell–cell contacts and extracellular signalling events regulating proliferation.

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3485
Author(s):  
Shashi Prakash Singh ◽  
Peter A. Thomason ◽  
Robert H. Insall

The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here, we report that the Abi subunit—but not Scar—is phosphorylated in response to extracellular signalling in Dictyostelium cells. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation—cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Dictyostelium, in which Scar and Abi are both unphosphorylatable, can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.


2018 ◽  
Vol 45 (1) ◽  
pp. 132-145.e3 ◽  
Author(s):  
Christina L. Dix ◽  
Helen K. Matthews ◽  
Marina Uroz ◽  
Susannah McLaren ◽  
Lucie Wolf ◽  
...  

2005 ◽  
Vol 33 (6) ◽  
pp. 1256-1259 ◽  
Author(s):  
A. Schirenbeck ◽  
R. Arasada ◽  
T. Bretschneider ◽  
M. Schleicher ◽  
J. Faix

Filopodia are finger-like cell protrusions composed of parallel arrays of actin filaments, which elongate through actin polymerization at their tips. These highly dynamic structures seem to be used by many cell types as sensing organs to explore environmental cues and have been implicated in cell motility as well as in cell–substrate adhesion. Formins are highly conserved multidomain proteins that play important roles in the nucleation of actin and the formation of linear actin filaments, yet their role in filopodia formation has remained poorly defined. The Dictyostelium diaphanous-related formin dDia2 is strongly enriched in filopodia tips. Genetic and biochemical analysis revealed that this protein is important for cell migration and cell adhesion, but most importantly for the formation of filopodia. Recently, we have identified the Dictyostelium VASP (vasodilator-stimulated phosphoprotein) orthologue as a binding partner of dDia2 and provide evidence for a co-operative role of both proteins in filopodia formation.


2015 ◽  
Vol 7 (10) ◽  
pp. 1228-1241 ◽  
Author(s):  
Andrea Ravasio ◽  
Anh Phuong Le ◽  
Thuan Beng Saw ◽  
Victoria Tarle ◽  
Hui Ting Ong ◽  
...  

Combining live cell imaging, particle image velocimetry and numerical simulations, we show the role of extracellular matrix and intercellular adhesion on the expansion of epithelial cells.


2021 ◽  
Author(s):  
Shashi Prakash Singh ◽  
Peter Thomason ◽  
Robert Insall

The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here we report that the Abi subunit - not Scar/WAVE - is phosphorylated in response to extracellular signalling. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar/WAVE complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation - cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar/WAVE patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Cells in which Scar and Abi are both unphosphorylatable can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.


2020 ◽  
Vol 21 (15) ◽  
pp. 5269 ◽  
Author(s):  
Ignasi Casanellas ◽  
Anna Lagunas ◽  
Yolanda Vida ◽  
Ezequiel Pérez-Inestrosa ◽  
José A. Andrades ◽  
...  

Tackling the first stages of the chondrogenic commitment is essential to drive chondrogenic differentiation to healthy hyaline cartilage and minimize hypertrophy. During chondrogenesis, the extracellular matrix continuously evolves, adapting to the tissue adhesive requirements at each stage. Here, we take advantage of previously developed nanopatterns, in which local surface adhesiveness can be precisely tuned, to investigate its effects on prechondrogenic condensation. Fluorescence live cell imaging, immunostaining, confocal microscopy and PCR analysis are used to follow the condensation process on the nanopatterns. Cell tracking parameters, condensate morphology, cell–cell interactions, mechanotransduction and chondrogenic commitment are evaluated in response to local surface adhesiveness. Results show that only condensates on the nanopatterns of high local surface adhesiveness are stable in culture and able to enter the chondrogenic pathway, thus highlighting the importance of controlling cell–substrate adhesion in the tissue engineering strategies for cartilage repair.


1989 ◽  
Vol 264 (14) ◽  
pp. 8012-8018 ◽  
Author(s):  
M Yamagata ◽  
S Suzuki ◽  
S K Akiyama ◽  
K M Yamada ◽  
K Kimata

Sign in / Sign up

Export Citation Format

Share Document