scholarly journals Dead bacterial absorption of antimicrobial peptides underlies collective tolerance

2019 ◽  
Vol 16 (151) ◽  
pp. 20180701 ◽  
Author(s):  
Fan Wu ◽  
Cheemeng Tan

The collective tolerance towards antimicrobial peptides (APs) is thought to occur primarily through mechanisms associated with live bacterial cells. In contrast to the focus on live cells, we discover that the LL37 antimicrobial peptide kills a subpopulation of Escherichia coli , forming dead cells that absorb the remaining LL37 from the environment. Combining mathematical modelling with population and single-cell experiments, we show that bacteria absorb LL37 at a timing that coincides with the permeabilization of their cytoplasmic membranes. Furthermore, we show that one bacterial strain can absorb LL37 and protect another strain from killing by LL37. Finally, we demonstrate that the absorption of LL37 by dead bacteria can be reduced using a peptide adjuvant. In contrast to the known collective tolerance mechanisms, we show that the absorption of APs by dead bacteria is a dynamic process that leads to emergent population behaviour.

2018 ◽  
Author(s):  
Fan Wu ◽  
Cheemeng Tan

AbstractThe collective tolerance towards antimicrobial peptides (APs) is thought to occur primarily through mechanisms associated with live bacterial cells. In contrast to the focus on live cells, we discover that the LL37 antimicrobial peptide kills Escherichia coli, forming a subpopulation of dead cells that absorbs the remaining LL37 into its intracellular space. Combining mathematical modeling with population and single-cell experiments, we show that bacteria absorb LL37 at a timing that coincides with the permeabilization of their cytoplasmic membranes. Furthermore, we show that one bacterial strain can absorb LL37 and protect another strain from killing by LL37. Finally, we demonstrate that the intracellular absorption of LL37 can be reduced using a peptide adjuvant. In contrast to the existing collective tolerance mechanisms, we show that the dead-bacterial absorption of APs is a dynamic process that leads to emergent population behavior, and the work suggests new directions to enhance the efficacy of APs.


2010 ◽  
Vol 28 (No. 5) ◽  
pp. 392-406 ◽  
Author(s):  
D. Żyżelewicz ◽  
E. Nebesny ◽  
I. Motyl ◽  
Z. Libudzisz

Manufacturing of novel foodstuffs supplemented with live probiotic bacteria has recently been intensively investigated. The supplementation of confectionery with probiotics is troublesome since some unit technological processes are conducted at high temperatures and the products are usually stored at ambient temperature. Our group has developed a method of the production of milk chocolate, sweetened with either sucrose or isomalt and aspartame, containing 32, 36, or 40 g/100 g fat, and supplemented with live cells of probiotic bacterial strains: Lactobacillus casei and paracasei. This new milk chocolate displayed the same sensory properties as the reference, probiotic-free chocolate. The number of live bacterial cells was maintained at the functional level of 10<sup>6</sup> &divide; 10<sup>8</sup> cfu/g after keeping for 12 months irrespective of the temperature. The highest number of live probiotic bacteria survived in the chocolate kept at 4&deg;C. Thus the product can be regarded as functional food.


2005 ◽  
Vol 2005 (1) ◽  
pp. 44-56 ◽  
Author(s):  
Satya Prakash ◽  
Mitchell Lawrence Jones

There has been rapid growth in research regarding the use of live bacterial cells for therapeutic purposes. The recognition that these cells can be genetically engineered to synthesize products that have therapeutic potential has generated considerable interest and excitement among clinicians and health professionals. It is expected that a wide range of disease modifying substrates such as enzymes, hormones, antibodies, vaccines, and other genetic products will be used successfully and will impact upon health care substantially. However, a major limitation in the use of these bacterial cells is the complexity of delivering them to the correct target tissues. Oral delivery of live cells, lyophilized cells, and immobilized cells has been attempted but with limited success. Primarily, this is because bacterial cells are incapable of surviving passage through the gastrointestinal tract. In many occasions, when given orally, these cells have been found to provoke immunogenic responses that are undesirable. Recent studies show that these problems can be overcome by delivering live bacterial cells, such as genetically engineered cells, using artificial cell microcapsules. This review summarizes recent advances in the therapeutic use of live bacterial cells for therapy, discusses the principles of using artificial cells for the oral delivery of bacterial cells, outlines methods for preparing suitable artificial cells for this purpose, addresses potentials and limitations for their application in therapy, and provides insight for the future direction of this emergent and highly prospective technology.


2002 ◽  
Vol 729 ◽  
Author(s):  
Rafael Gómez ◽  
Michael R. Ladisch ◽  
Arun K. Bhunia ◽  
Rashid Bashir

AbstractWe present the use of a microfabricated device for impedance-based detection of a few live bacterial cells. Impedance-based detection relies on measuring changes in the AC impedance of two electrodes immersed in a liquid were the bacteria are cultured, caused by the release of ionic species by metabolizing bacterial cells. Rapid detection of a few cells (1 to 10) is possible if the cells are confined into a volume on the order of nanoliters. A microfluidic biochip prototype has been fabricated to test this miniaturized assay. The conductance of the bacterial suspensions is extracted from measuring their complex impedance in a 5.27 nl chamber in the biochip, at several frequencies between 100 Hz and 1 MHz. Measurements on suspensions of the bacteria Listeria innocua, Listeria monocytogenes, and Escherichia coli in a low conductivity buffer demonstrate that, under the current experimental conditions, the minimum detection level is between 50 and 200 live cells, after two hours of off-chip incubation. Work is in progress to develop techniques for selective capture of bacteria inside the chip, and to minimize background changes in impedance during on-chip incubation.


1992 ◽  
Vol 38 (7) ◽  
pp. 614-617 ◽  
Author(s):  
Xue Bin Zhang ◽  
Yoshiyuki Ohta

The binding of mutagenic pyrolyzates to cell fractions from some gram-negative intestinal bacteria and to thermally treated bacterial cells was investigated. 3-Amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) and 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) were effectively bound by several of the bacterial cells. The cell wall skeletons of all bacteria effectively bound Trp-P-1 and Trp-P-2. Their cytoplasmic fractions retained Trp-P-1 and Trp-P-2, but to a lesser extent than the cell wall skeletons. 2-Amino-3-methylimidazo [4,5-f]quinoline (IQ) was not found in their cytoplasmic fractions. These cell wall skeletons also bound 2-amino-6-methyldipyrido[1,2-a:3′2′-d] imidazole (Glu-P-1), 2-amino-5-phenylpyridine (Phe-P-1), IQ, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ), and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQX). The amount of each mutagen bound differed with the type of mutagen and the bacterial strain used. The outer membrane of Escherichia coli IFO 14249 showed binding of about 123.7 μg/mg of Trp-P-2, and its cytoplasmic membrane bound 57.14 μg/mg. Trp-P-2 bound to the bacterial cells was extracted with ammonia (5%), methanol, and ethanol but not with water. Key words: cell wall skeletons, outer membrane, cytoplasmic membrane, binding of mutagenic pyrolyzates.


Author(s):  
О.В. Шамова ◽  
М.С. Жаркова ◽  
П.М. Копейкин ◽  
Д.С. Орлов ◽  
Е.А. Корнева

Антимикробные пептиды (АМП) системы врожденного иммунитета - соединения, играющие важную роль в патогенезе инфекционных заболеваний, так как обладают свойством инактивировать широкий спектр патогенных бактерий, обеспечивая противомикробную защиту живых организмов. В настоящее время АМП рассматриваются как потенциальные соединения-корректоры инфекционной патологии, вызываемой антибиотикорезистентными бактериями (АБР). Цель данной работы состояла в изученим механизмов антибактериального действия трех пептидов, принадлежащих к семейству бактенецинов - ChBac3.4, ChBac5 и mini-ChBac7.5Nb. Эти химически синтезированные пептиды являются аналогами природных пролин-богатых АМП, обнаруженных в лейкоцитах домашней козы Capra hircus и проявляющих высокую антимикробную активность, в том числе и в отношении грамотрицательных АБР. Методы. Минимальные ингибирующие и минимальные бактерицидные концентрации пептидов (МИК и МБК) определяли методом серийных разведений в жидкой питательной среде с последующим высевом на плотную питательную среду. Эффекты пептидов на проницаемость цитоплазматической мембраны бактерий для хромогенного маркера исследовали с использованием генетически модифицированного штамма Escherichia coli ML35p. Действие бактенецинов на метаболическую активность бактерий изучали с применением маркера резазурина. Результаты. Показано, что все исследованные пептиды проявляют высокую антимикробную активность в отношении Escherichia coli ML35p и антибиотикоустойчивых штаммов Escherichia coli ESBL и Acinetobacter baumannii in vitro, но их действие на бактериальные клетки разное. Использован комплекс методик, позволяющих наблюдать в режиме реального времени динамику действия бактенецинов в различных концентрациях (включая их МИК и МБК) на барьерную функцию цитоплазматической мембраны и на интенсивность метаболизма бактериальных клеток, что дало возможность выявить различия в характере воздействия бактенецинов, отличающихся по структуре молекулы, на исследуемые микроорганизмы. Установлено, что действие каждого из трех исследованных бактенецинов в бактерицидных концентрациях отличается по эффективности нарушения целостности бактериальных мембран и в скорости подавления метаболизма клеток. Заключение. Полученная информация дополнит существующие фундаментальные представления о механизмах действия пролин-богатых пептидов врожденного иммунитета, а также послужит основой для биотехнологических исследований, направленных на разработку на базе этих соединений новых антибиотических препаратов для коррекции инфекционных заболеваний, вызываемых АБР и являющимися причинами тяжелых внутрибольничных инфекций. Antimicrobial peptides (AMPs) of the innate immunity are compounds that play an important role in pathogenesis of infectious diseases due to their ability to inactivate a broad array of pathogenic bacteria, thereby providing anti-microbial host defense. AMPs are currently considered promising compounds for treatment of infectious diseases caused by antibiotic-resistant bacteria. The aim of this study was to investigate molecular mechanisms of the antibacterial action of three peptides from the bactenecin family, ChBac3.4, ChBac5, and mini-ChBac7.5Nb. These chemically synthesized peptides are analogues of natural proline-rich AMPs previously discovered by the authors of the present study in leukocytes of the domestic goat, Capra hircus. These peptides exhibit a high antimicrobial activity, in particular, against antibiotic-resistant gram-negative bacteria. Methods. Minimum inhibitory and minimum bactericidal concentrations of the peptides (MIC and MBC) were determined using the broth microdilution assay followed by subculturing on agar plates. Effects of the AMPs on bacterial cytoplasmic membrane permeability for a chromogenic marker were explored using a genetically modified strain, Escherichia coli ML35p. The effect of bactenecins on bacterial metabolic activity was studied using a resazurin marker. Results. All the studied peptides showed a high in vitro antimicrobial activity against Escherichia coli ML35p and antibiotic-resistant strains, Escherichia coli ESBL and Acinetobacter baumannii, but differed in features of their action on bacterial cells. The used combination of techniques allowed the real-time monitoring of effects of bactenecin at different concentrations (including their MIC and MBC) on the cell membrane barrier function and metabolic activity of bacteria. The differences in effects of these three structurally different bactenecins on the studied microorganisms implied that these peptides at bactericidal concentrations differed in their capability for disintegrating bacterial cell membranes and rate of inhibiting bacterial metabolism. Conclusion. The obtained information will supplement the existing basic concepts on mechanisms involved in effects of proline-rich peptides of the innate immunity. This information will also stimulate biotechnological research aimed at development of new antibiotics for treatment of infectious diseases, such as severe in-hospital infections, caused by antibiotic-resistant strains.


Author(s):  
Olja Šovljanski ◽  
Lato Pezo ◽  
Ana Tomić ◽  
Aleksandra Ranitović ◽  
Dragoljub Cvetković ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document