scholarly journals Characterization of rat tail lymphatic contractility and biomechanics: incorporating nitric oxide-mediated vasoregulation

2020 ◽  
Vol 17 (170) ◽  
pp. 20200598 ◽  
Author(s):  
Mohammad S. Razavi ◽  
J. Brandon Dixon ◽  
Rudolph L. Gleason

The lymphatic system transports lymph from the interstitial space back to the great veins via a series of orchestrated contractions of chains of lymphangions. Biomechanical models of lymph transport, validated with ex vivo or in vivo experimental results, have proved useful in revealing novel insight into lymphatic pumping; however, a need remains to characterize the contributions of vasoregulatory compounds in these modelling tools. Nitric oxide (NO) is a key mediator of lymphatic pumping. We quantified the active contractile and passive biaxial biomechanical response of rat tail collecting lymphatics and changes in the contractile response to the exogenous NO administration and integrated these findings into a biomechanical model. The passive mechanical response was characterized with a three-fibre family model. Nonlinear regression and non-parametric bootstrapping were used to identify best-fit material parameters to passive cylindrical biaxial mechanical data, assessing uniqueness and parameter confidence intervals; this model yielded a good fit ( R 2 = 0.90). Exogenous delivery of NO via sodium nitroprusside (SNP) elicited a dose-dependent suppression of contractions; the amplitude of contractions decreased by 30% and the contraction frequency decreased by 70%. Contractile function was characterized with a modified Rachev–Hayashi model, introducing a parameter that is related to SNP concentration; the model provided a good fit ( R 2 = 0.89) to changes in contractile responses to varying concentrations of SNP. These results demonstrated the significant role of NO in lymphatic pumping and provide a predictive biomechanical model to integrate the combined effect of mechanical loading and NO on lymphatic contractility and mechanical response.

Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Mona Soliman

Resuscitation following hemorrhagic shock result in myocardial contractile dysfunction and injury. We examined the protective effects of non-selective inhibitor of nitric oxide synthase N(G)-nitro-L-arginine methylester (L-NAME) on myocardial contractile function in the isolated perfused hearts, after ex vivo as well as in vivo treatment with L-NAME and resuscitation following one hour of hemorrhagic shock.Male Sprague Dawley rats (300-350 gm) were assigned to 2 sets of experimental protocols: ex vivo and in vivo treatment and resuscitation. Each set has 3 experimental groups (n= 6 per group): normotensive (N), hemorrhagic shock and resuscitation (HS-R) and hemorrhagic shock rats treated with L-NAME and resuscitated (HS- L-NAME-R). Rats were hemorrhaged over 60 min to reach a mean arterial blood pressure of 40 mmHg. In the ex vivo group, hearts were harvested and ex vivo treated and resuscitated by perfused in the Langendorff System. In the L-NAME treated group, L-NAME was added for the first 5 min . Cardiac function was measured Left ventricular generated pressure and +dP/dt were calculated. In the in vivo group, rats were treated with L-NAME intra-arterially after 60 min hemorrhagic shock. Resuscitation was performed in vivo by the reinfusion of the shed blood for 30 min to restore normo-tension. Inhibition of nitric oxide synthase using L-NAME before resuscitation in ex vivo treated and resuscitated isolated hearts and in in vivo treated and resuscitated rats following hemorrhagic shock improved myocardial contractile function. Left ventricular generated pressure and + dP/dt max was significantly higher in L-NAME treated rats compared to the untreated group.Treatment with L-NAME improved left ventricular generated pressure following hemorrhagic shock in the ex vivo as well as the in vivo treated and resuscitated rats. The results indicate that L-NAME protects the myocardium against dysfunction by inhibiting NOS.


2021 ◽  
Vol 82 (5) ◽  
Author(s):  
Hannah J. Pybus ◽  
Amanda L. Tatler ◽  
Lowell T. Edgar ◽  
Reuben D. O’Dea ◽  
Bindi S. Brook

AbstractPrecision-cut lung-slices (PCLS), in which viable airways embedded within lung parenchyma are stretched or induced to contract, are a widely used ex vivo assay to investigate bronchoconstriction and, more recently, mechanical activation of pro-remodelling cytokines in asthmatic airways. We develop a nonlinear fibre-reinforced biomechanical model accounting for smooth muscle contraction and extracellular matrix strain-stiffening. Through numerical simulation, we describe the stresses and contractile responses of an airway within a PCLS of finite thickness, exposing the importance of smooth muscle contraction on the local stress state within the airway. We then consider two simplifying limits of the model (a membrane representation and an asymptotic reduction in the thin-PCLS-limit), that permit analytical progress. Comparison against numerical solution of the full problem shows that the asymptotic reduction successfully captures the key elements of the full model behaviour. The more tractable reduced model that we develop is suitable to be employed in investigations to elucidate the time-dependent feedback mechanisms linking airway mechanics and cytokine activation in asthma.


2004 ◽  
Vol 286 (3) ◽  
pp. E449-E455 ◽  
Author(s):  
Andrew N. Carley ◽  
Lisa M. Semeniuk ◽  
Yakhin Shimoni ◽  
Ellen Aasum ◽  
Terje S. Larsen ◽  
...  

Hearts from insulin-resistant type 2 diabetic db/db mice exhibit features of a diabetic cardiomyopathy with altered metabolism of exogenous substrates and reduced contractile performance. Therefore, the effect of chronic oral administration of 2-(2-(4-phenoxy-2-propylphenoxy)ethyl)indole-5-acetic acid (COOH), a novel ligand for peroxisome proliferator-activated receptor-γ that produces insulin sensitization, to db/db mice (30 mg/kg for 6 wk) on cardiac function was assessed. COOH treatment reduced blood glucose from 27 mM in untreated db/db mice to a normal level of 10 mM. Insulin-stimulated glucose uptake was enhanced in cardiomyocytes from COOH-treated db/db hearts. Working perfused hearts from COOH-treated db/db mice demonstrated metabolic changes with enhanced glucose oxidation and decreased palmitate oxidation. However, COOH treatment did not improve contractile performance assessed with ex vivo perfused hearts and in vivo by echocardiography. The reduced outward K+ currents in diabetic cardiomyocytes were still attenuated after COOH. Metabolic changes in COOH-treated db/db hearts are most likely indirect, secondary to changes in supply of exogenous substrates in vivo and insulin sensitization.


2017 ◽  
Vol 313 (6) ◽  
pp. H1249-H1260 ◽  
Author(s):  
Mohammad S. Razavi ◽  
Tyler S. Nelson ◽  
Zhanna Nepiyushchikh ◽  
Rudolph L. Gleason ◽  
J. Brandon Dixon

The intrinsic contraction of collecting lymphatic vessels serves as a pumping system to propel lymph against hydrostatic pressure gradients as it returns interstitial fluid to the venous circulation. In the present study, we proposed and validated that the maximum opposing outflow pressure along a chain of lymphangions at which flow can be achieved increases with the length of chain. Using minimally invasive near-infrared imaging to measure the effective pumping pressure at various locations in the rat tail, we demonstrated increases in pumping pressure along the length of the tail. Computational simulations based on a microstructurally motivated model of a chain of lymphangions informed from biaxial testing of isolated vessels was used to provide insights into the pumping mechanisms responsible for the pressure increases observed in vivo. These models suggest that the number of lymphangions in the chain and smooth muscle cell force generation play a significant role in determining the maximum outflow pressure, whereas the frequency of contraction has no effect. In vivo administration of nitric oxide attenuated lymphatic contraction, subsequently lowering the effective pumping pressure. Computational simulations suggest that the reduction in contractile strength of smooth muscle cells in the presence of nitric oxide can account for the reductions in outflow pressure observed along the lymphangion chain in vivo. Thus, combining modeling with multiple measurements of lymphatic pumping pressure provides a method for approximating intrinsic lymphatic muscle activity noninvasively in vivo while also providing insights into factors that determine the extent that a lymphangion chain can transport fluid against an adverse pressure gradient. NEW & NOTEWORTHY Here, we report the first minimally invasive in vivo measurements of the relationship between lymphangion chain length and lymphatic pumping pressure. We also provide the first in vivo validation of lumped parameter models of lymphangion chains previously developed through data obtained from isolated vessel testing.


2000 ◽  
Vol 278 (5) ◽  
pp. L1071-L1081 ◽  
Author(s):  
Mingyao Liu ◽  
Lorraine Tremblay ◽  
Stephen D. Cassivi ◽  
Xiao-Hui Bai ◽  
Eric Mourgeon ◽  
...  

Decreased nitric oxide (NO) production has been reported during lung transplantation in patients. To study the effects of ischemia and reperfusion on endogenous NO synthase (NOS) expression, both an ex vivo and an in vivo lung injury model for transplantation were used. Donor rat lungs were flushed with cold low-potassium dextran solution and subjected to either cold (4°C for 12 h) or warm (21°C for 4 h) ischemic preservation followed by reperfusion with an ex vivo model. A significant increase in inducible NOS and a decrease in endothelial NOS mRNA was found after reperfusion. These results were confirmed in a rat single-lung transplant model after warm preservation. Interestingly, protein contents of both inducible NOS and endothelial NOS increased in the transplanted lung after 2 h of reperfusion. However, the total activity of NOS in the transplanted lungs remained at very low levels. We conclude that ischemic lung preservation and reperfusion result in altered NOS gene and protein expression with inhibited NOS activity, which may contribute to the injury of lung transplants.


Author(s):  
Amy E. Kerdok ◽  
Robert D. Howe ◽  
Simona Socrate

Computer-aided medical technologies are currently restricted by the limited understanding of the mechanical response of solid abdominal organs to finite loading conditions typical of surgical manipulation [5]. This limitation is a result of the difficulty in acquiring the necessary data on whole organs. To develop a constitutive model capable of predicting complex surgical scenarios, multiple testing modalities need to be simultaneously obtained to capture the fundamental nature of the tissue’s behavior under such conditions. In vivo tests are essential to obtain a realistic response, but their inherent difficulty and unknown boundary conditions makes them an impractical approach. Ex vivo tests are easy to control, but the response is unrealistic. A perfusion apparatus was previously developed that obtained near in vivo conditions for whole livers while allowing the ease of ex vivo testing [3]. This work presents the results from complete viscoelastic testing of whole-perfused livers with surgically relevant time-dependant indentation loading profiles to 35% nominal strain. These results will aid in the development of a constitutive model for the liver whose parameters can be related to the physical constituents of the tissue. As an intermediate modeling step, a 1D rheological modeling tool was used to identify the form and initial parameters for a constitutive model.


2020 ◽  
Vol 48 (12) ◽  
pp. 2901-2910 ◽  
Author(s):  
Hattie C. Cutcliffe ◽  
Keithara M. Davis ◽  
Charles E. Spritzer ◽  
Louis DeFrate

AbstractOsteoarthritis (OA) is a disease characterized by the degeneration of cartilage tissue, and is a leading cause of disability in the United States. The clinical diagnosis of OA includes the presence of pain and radiographic imaging findings, which typically do not present until advanced stages of the disease when treatment is difficult. Therefore, identifying new methods of OA detection that are sensitive to earlier pathological changes in cartilage, which may be addressed prior to the development of irreversible OA, is critical for improving OA treatment. A potentially promising avenue for developing early detection methods involves measuring the tissue’s in vivo mechanical response to loading, as changes in mechanical function are commonly observed in ex vivo studies of early OA. However, thus far the mechanical function of cartilage has not been widely assessed in vivo. Therefore, the purpose of this study was to develop a novel methodology that can be used to measure an in vivo mechanical property of cartilage: the characteristic recovery time. Specifically, in this study we quantified the characteristic recovery time of cartilage thickness after exercise in relatively young subjects with asymptomatic cartilage. Additionally, we measured baseline cartilage thickness and T1rho and T2 relaxation times (quantitative MRI) prior to exercise in these subjects to assess whether baseline MRI measures are predictive of the characteristic recovery time, to understand whether or not the characteristic recovery time provides independent information about cartilage’s mechanical state. Our results show that the mean recovery strain response across subjects was well-characterized by an exponential approach with a characteristic time of 25.2 min, similar to literature values of human characteristic times measured ex vivo. Further, we were unable to detect a statistically significant linear relationship between the characteristic recovery time and the baseline metrics measured here (T1rho relaxation time, T2 relaxation time, and cartilage thickness). This might suggest that the characteristic recovery time has the potential to provide additional information about the mechanical state of cartilage not captured by these baseline MRI metrics. Importantly, this study presents a noninvasive methodology for quantifying the characteristic recovery time, an in vivo mechanical property of cartilage. As mechanical response may be indicative of cartilage health, this study underscores the need for future studies investigating the characteristic recovery time and in vivo cartilage mechanical response at various stages of OA.


2012 ◽  
Vol 303 (1) ◽  
pp. R94-R100 ◽  
Author(s):  
Robert Boushel ◽  
Teresa Fuentes ◽  
Ylva Hellsten ◽  
Bengt Saltin

Nitric oxide (NO) and prostaglandins (PG) together play a role in regulating blood flow during exercise. NO also regulates mitochondrial oxygen consumption through competitive binding to cytochrome- c oxidase. Indomethacin uncouples and inhibits the electron transport chain in a concentration-dependent manner, and thus, inhibition of NO and PG synthesis may regulate both muscle oxygen delivery and utilization. The purpose of this study was to examine the independent and combined effects of NO and PG synthesis blockade (l-NMMA and indomethacin, respectively) on mitochondrial respiration in human muscle following knee extension exercise (KEE). Specifically, this study examined the physiological effect of NO, and the pharmacological effect of indomethacin, on muscle mitochondrial function. Consistent with their mechanism of action, we hypothesized that inhibition of nitric oxide synthase (NOS) and PG synthesis would have opposite effects on muscle mitochondrial respiration. Mitochondrial respiration was measured ex vivo by high-resolution respirometry in saponin-permeabilized fibers following 6 min KEE in control (CON; n = 8), arterial infusion of NG-monomethyl-l-arginine (l-NMMA; n = 4) and Indo ( n = 4) followed by combined inhibition of NOS and PG synthesis (l-NMMA + Indo, n = 8). ADP-stimulated state 3 respiration (OXPHOS) with substrates for complex I (glutamate, malate) was reduced 50% by Indo. State 3 O2 flux with complex I and II substrates was reduced less with both Indo (20%) and l-NMMA + Indo (15%) compared with CON. The results indicate that indomethacin reduces state 3 mitochondrial respiration primarily at complex I of the respiratory chain, while blockade of NOS by l-NMMA counteracts the inhibition by Indo. This effect on muscle mitochondria, in concert with a reduction of blood flow accounts for in vivo changes in muscle O2 consumption during combined blockade of NOS and PG synthesis.


Sign in / Sign up

Export Citation Format

Share Document