scholarly journals Shape matters—the interaction of gold nanoparticles with model lung surfactant monolayers

2021 ◽  
Vol 18 (183) ◽  
Author(s):  
Sheikh I. Hossain ◽  
Zhen Luo ◽  
Evelyne Deplazes ◽  
Suvash C. Saha

The lung surfactant monolayer (LSM) forms the main biological barrier for any inhaled particles to enter our bloodstream, including gold nanoparticles (AuNPs) present as air pollutants and under investigation for use in biomedical applications. Understanding the interaction of AuNPs with lung surfactant can assist in understanding how AuNPs enter our lungs. In this study, we use coarse-grained molecular dynamics simulations to investigate the effect of four different shape D AuNPs (spherical, box, icosahedron and rod) on the structure and dynamics of a model LSM, with a particular focus on differences resulting from the shape of the AuNP. Monolayer-AuNP systems were simulated in two different states: the compressed state and the expanded state, representing inhalation and exhalation conditions, respectively. Our results indicate that the compressed state is more affected by the presence of the AuNPs than the expanded state. Our results show that in the compressed state, the AuNPs prevent the monolayer from reaching the close to zero surface tension required for normal exhalation. In the compressed state, all four nanoparticles (NPs) reduce the lipid order parameters and cause a thinning of the monolayer where the particles drag surfactant molecules into the water phase. Comparing the different properties shows no trend concerning which shape has the biggest effect on the monolayer, as shape-dependent effects vary among the different properties. Insights from this study might assist future work of how AuNP shapes affect the LSM during inhalation or exhalation conditions.

2019 ◽  
Vol 21 (24) ◽  
pp. 13099-13108 ◽  
Author(s):  
Susanna Monti ◽  
Jiya Jose ◽  
Athira Sahajan ◽  
Nandakumar Kalarikkal ◽  
Sabu Thomas

Functionalized gold nanoparticles for antibiotic drug delivery: from the nanoscale to the atomic scale.


MRS Advances ◽  
2019 ◽  
Vol 4 (20) ◽  
pp. 1177-1185 ◽  
Author(s):  
Sheikh I. Hossain ◽  
Neha S. Gandhi ◽  
Zak E. Hughes ◽  
Suvash C. Saha

ABSTRACTLung surfactant (LS), a thin layer of phospholipids and proteins inside the alveolus of the lung is the first biological barrier to inhaled nanoparticles (NPs). LS stabilizes and protects the alveolus during its continuous compression and expansion by fine-tuning the surface tension at the air-water interface. Previous modelling studies have reported the biophysical function of LS monolayer and its role, but many open questions regarding the consequences and interactions of airborne nano-sized particles with LS monolayer remain. In spite of gold nanoparticles (AuNPs) having a paramount role in biomedical applications, the understanding of the interactions between bare AuNPs (as pollutants) and LS monolayer components still unresolved. Continuous inhalation of NPs increases the possibility of lung ageing, reducing the normal lung functioning and promoting lung malfunction, and may induce serious lung diseases such as asthma, lung cancer, acute respiratory distress syndrome, and more. Different medical studies have shown that AuNPs can disrupt the routine lung functions of gold miners and promote respiratory diseases. In this work, coarse-grained molecular dynamics simulations are performed to gain an understanding of the interactions between bare AuNPs and LS monolayer components at the nanoscale. Different surface tensions of the monolayer are used to mimic the biological process of breathing (inhalation and exhalation). It is found that the NP affects the structure and packing of the lipids by disordering lipid tails. Overall, the analysed results suggest that bare AuNPs impede the normal biophysical function of the lung, a finding that has beneficial consequences to the potential development of treatments of various respiratory diseases.


2020 ◽  
Vol 22 (27) ◽  
pp. 15231-15241
Author(s):  
Sheikh I. Hossain ◽  
Neha S. Gandhi ◽  
Zak E. Hughes ◽  
Suvash C. Saha

Lung surfactant monolayer’s (acts as the first line barrier for inhaled nanoparticles) components (lipids and peptides) rearrange themselves by the influence of exposed gold nanoparticles at various stages of the breathing cycle.


RSC Advances ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 3745-3755 ◽  
Author(s):  
Mohammed Lemaalem ◽  
Nourddine Hadrioui ◽  
Abdelali Derouiche ◽  
Hamid Ridouane

In this work, coarse-grained molecular dynamics simulations are carried out in NPTH and NVTE statistical ensembles in order to study the structure and dynamics properties of liposomes coated with polyethylene glycol (PEG).


2021 ◽  
Author(s):  
Riccardo Capelli ◽  
Andrea Gardin ◽  
Charly Empereur-mot ◽  
Giovanni Doni ◽  
Giovanni M. Pavan

<div><div><div><p>Molecular dynamics simulations of all-atom and coarse-grained lipid bilayer models are increasingly used to obtain insights useful for understanding the structural dynamics of these assemblies. In this context, one crucial point concerns the comparison of the performance and accuracy of classical force fields (FFs), which sometimes remains elusive. To date, the assessments performed on different classical potentials are mostly based on the comparison with experimental observables, which typically regard average properties. However, local differences of structure and dynamics, which are poorly captured by average measurements, can make a difference, but these are non-trivial to catch. Here we propose an agnostic way to compare different FFs at different resolutions (atomistic, united-atom, and coarse-grained), by means of a high-dimensional similarity metrics built on the framework of Smooth Overlap of Atomic Positions (SOAP). We compare and classify a set of 13 force fields, modeling 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers. Our SOAP kernels-based metrics allows us to compare, discriminate and correlate different force fields at different model resolutions in an unbiased, high-dimensional way. This also captures differences between FFs in modeling non-average events (originating from local transitions), such as for example the liquid-to-gel phase transition in dipalmitoylphosphatidylcholine (DPPC) bilayers, for which our metrics allows to identify nucleation centers for the phase transition, highlighting some intrinsic resolution limitations in implicit vs. explicit solvent force fields.</p></div></div></div>


Nanoscale ◽  
2019 ◽  
Vol 11 (15) ◽  
pp. 7371-7385 ◽  
Author(s):  
Zhiqiang Shen ◽  
William Baker ◽  
Huilin Ye ◽  
Ying Li

We systematically study the aggregation of pH-responsive AuNPs and their interactions with model lipid bilayers by using Martini coarse-grained molecular dynamics simulations.


2002 ◽  
Vol 22 (2) ◽  
pp. 151-173 ◽  
Author(s):  
Leonor Saiz ◽  
Sanjoy Bandyopadhyay ◽  
Michael L. Klein

Computer simulation has emerged as a powerful tool for studying the structural and functional properties of complex biological membranes. In the last few years, the use of recently developed simulation methodologies and current generation force fields has permitted novel applications of molecular dynamics simulations, which have enhanced our understanding of the different physical processes governing biomembrane structure and dynamics. This review focuses on frontier areas of research with important biomedical applications. We have paid special attention to polyunsaturated lipids, membrane proteins and ion channels, surfactant additives in membranes, and lipid–DNA gene transfer complexes.


Sign in / Sign up

Export Citation Format

Share Document