scholarly journals In situ measurements of reef squid polarization patterns using two-dimensional polarization data mapped onto three-dimensional tessellated surfaces

2021 ◽  
Vol 18 (184) ◽  
Author(s):  
P. C. Brady ◽  
M. E. Cummings ◽  
V. Gruev ◽  
T. Hernandez ◽  
S. Blair ◽  
...  

Reef squids belong to a group reputed for polarization sensitivity, yet polarization patterns of reef squid have not been quantified in situ . To quantify polarization patterns from video polarimetric data, we developed a protocol to map two-dimensional polarization data onto squid-shaped three-dimensional tessellated surfaces. This protocol provided a robust data container used to investigate three-dimensional regions-of-interest, producing data lineouts derived from the squid's geometry. This protocol also extracted polarimeter and squid body orientations and the solar heading from polarization images. When averaged over the solar heading, the ventral midline gave a low degree of polarization (2.4 ± 5.3%), and the area between the ventral and flank midlines had higher values (9.0 ± 5.3%). These averaged data had a large discontinuity in the angle of polarization (AoP) at the mantle's ventral midline (64 ± 55°), with larger discontinuities measured on individual squid. Ray-tracing calculations demonstrated that the AoP pattern was not related to the squid's surface-normal geometry. However, the AoP followed virtual striation axes on the squid's surface oriented 24° to the squid's long axis, similar in angle (27°) to the striations of birefringent collagen fibres documented in other squid species’ skin.

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 929
Author(s):  
Xudong Yang ◽  
Zexiao Li ◽  
Linlin Zhu ◽  
Yuchu Dong ◽  
Lei Liu ◽  
...  

Taper-cutting experiments are important means of exploring the nano-cutting mechanisms of hard and brittle materials. Under current cutting conditions, the brittle-ductile transition depth (BDTD) of a material can be obtained through a taper-cutting experiment. However, taper-cutting experiments mostly rely on ultra-precision machining tools, which have a low efficiency and high cost, and it is thus difficult to realize in situ measurements. For taper-cut surfaces, three-dimensional microscopy and two-dimensional image calculation methods are generally used to obtain the BDTDs of materials, which have a great degree of subjectivity, leading to low accuracy. In this paper, an integrated system-processing platform is designed and established in order to realize the processing, measurement, and evaluation of taper-cutting experiments on hard and brittle materials. A spectral confocal sensor is introduced to assist in the assembly and adjustment of the workpiece. This system can directly perform taper-cutting experiments rather than using ultra-precision machining tools, and a small white light interference sensor is integrated for in situ measurement of the three-dimensional topography of the cutting surface. A method for the calculation of BDTD is proposed in order to accurately obtain the BDTDs of materials based on three-dimensional data that are supplemented by two-dimensional images. The results show that the cutting effects of the integrated platform on taper cutting have a strong agreement with the effects of ultra-precision machining tools, thus proving the stability and reliability of the integrated platform. The two-dimensional image measurement results show that the proposed measurement method is accurate and feasible. Finally, microstructure arrays were fabricated on the integrated platform as a typical case of a high-precision application.


2019 ◽  
Vol 963 ◽  
pp. 5-9 ◽  
Author(s):  
Michael Salamon ◽  
Matthias Arzig ◽  
Norman Uhlmann ◽  
Peter J. Wellmann

Computed Tomography is becoming a valuable method for the in-situ monitoring of vapor grown silicon carbide single crystals [1]. Already the two-dimensional X-ray radiography has shown the potential of surveilling the growth process [2] and its characteristic features like the evolution of the facet, the crystal volume or the source material structure from one imaging plane. Even though the demands on imaging capability of the applied X-ray components used for a tomographic analysis are higher than for two-dimensional imaging, the extension of this method to the third dimension is highly beneficial. It allows investigating the full geometry and three-dimensional location of the features and by this provides a more accurate analysis. In this contribution we present the physical characteristics and the latest advances of our technique for the visualization of facets.


1997 ◽  
Vol 5 (1) ◽  
pp. 10-11
Author(s):  
Daniel R. Beniac ◽  
Gregory J. Czarnota ◽  
Brenda L. Rutherford ◽  
F. Peter Ottensmeyer ◽  
George Harauz

The ribosome is the protein synthetic machinery in the cell. Knowledge of the structures of ribosomal RNA (rRNA) macromolecules in situ is essential to understanding their roles in ribosome mediated protein synthesis. We are using a microanalytical technique that identifies and maps elements directly, electron spectroscopic imaging, to determine the rRNA phosphorus distributions within Escherichia coli ribosomal subunits, and to combine the two-dimensional maps into a three-dimensional elemental distribution by iterative quaternion-assisted angular reconstitution of ribosomal particles at random orientations.


Nanoscale ◽  
2019 ◽  
Vol 11 (21) ◽  
pp. 10203-10208 ◽  
Author(s):  
Xudong Yan ◽  
Huamei Zhao ◽  
Tengfei Li ◽  
Wang Zhang ◽  
Qinglei Liu ◽  
...  

Assembling two-dimensional (2D) nanomaterials into three-dimensional (3D) hierarchical structures with novel functions is challenging and has attracted considerable attention.


Sign in / Sign up

Export Citation Format

Share Document