scholarly journals Spatial capture–recapture analysis of artificial cover board survey data reveals small scale spatial variation in slow-worm Anguis fragilis density

2017 ◽  
Vol 4 (9) ◽  
pp. 170374 ◽  
Author(s):  
Benedikt R. Schmidt ◽  
Anita Meier ◽  
Chris Sutherland ◽  
J. Andy Royle

Vague and/or ad hoc definitions of the area sampled in monitoring efforts are common, and estimates of ecological state variables (e.g. distribution and abundance) can be sensitive to such specifications. The uncertainty in population metrics due to data deficiencies, vague definitions of space and lack of standardized protocols is a major challenge for monitoring, managing and conserving amphibian and reptile populations globally. This is especially true for the slow-worm ( Anguis fragilis ), a cryptic and fossorial legless lizard; uncertainty about spatial variation in density has hindered conservation efforts (e.g. in translocation projects). Spatial capture–recapture (SCR) methods can be used to estimate density while simultaneously and explicitly accounting for space and individual movement. We use SCR to analyse mark–recapture data of the slow-worm that were collected using artificial cover objects (ACO). Detectability varied among ACO grids and through the season. Estimates of slow-worm density varied across ACO grids (13, 45 and 46 individuals ha −1 , respectively). The estimated 95% home range size of slow-worms was 0.38 ha. Our estimates provide valuable information about slow-worm spatial ecology that can be used to inform future conservation management.

2021 ◽  
Author(s):  
Gökben Demir ◽  
Johanna Clara Metzger ◽  
Janett Filipzik ◽  
Christine Fischer ◽  
Beate Michalzik ◽  
...  

<div> <p>Evidence on spatial variation of net precipitation in grasslands is scarce. Challenges arise due to a small-scale canopy structure of grasslands.</p> <p>In this study, we designed and tested a new in-situ measurement device (interception grid) to assess net precipitation in grasslands. The collector allows the natural development of the canopy. We tested the device both in the lab for splash loss and in the field to test its capacity to assess net precipitation. In the field, we installed 25 collectors on a grassland within the Hainich Critical Zone Exploratory (Thuringia, Germany), 23 of which were paired with soil moisture sensors. We conducted weekly measurements gross and net precipitation (above and below the canopy), along with grass height in 2019 (March-August) and 2020 (January -February). We categorized the data into two groups (‘covered,’ ‘uncovered’), accounting for canopy development.</p> <p>In the lab, we found that the drop size strongly affects splash loss. Drops of ca. 2 mm, created more than 16% splash loss, decreasing to less than 3% for drops <1.5 mm. Drop sizes <1.75 mm during the sampling period (2019) suggest low to intermediate splash loss in the field, further decreased in the covered period as the canopy contact slows down the drops. Grid measurements corrected with estimated splash loss during the uncovered period agreed well with gross precipitation. Using linear mixed effect models, we found that wind speed and grass height significantly affected the grid measurements of covered periods. Therefore, grids were able to capture net precipitation variation due to grass development. These steps encouraged us to examine the canopy effect in the soil moisture response to rainfall.</p> <p>Soil moisture response over the entire period was not related to the spatial variation of net precipitation. However, for the drier period (June-August 2019), when the spatial variation in soil moisture is higher, and the overall response to rain events stronger, net precipitation slightly affected soil moisture response. LMEM analysis to estimate factors on soil moisture response showed that grass height, net precipitation are significant predictors. Yet, there is no remarkable difference between using net precipitation and gross precipitation as potential drivers for soil moisture response, indicating that the spatial effects are comparatively small. Overall, our findings suggest that the grids are cable to catch canopy effects on the precipitation, while the effect of wind on under-catch still needs to be investigated further.</p> </div>


2016 ◽  
Vol 13 (8) ◽  
pp. 2611-2621 ◽  
Author(s):  
Kimberley L. Davies ◽  
Richard D. Pancost ◽  
Mary E. Edwards ◽  
Katey M. Walter Anthony ◽  
Peter G. Langdon ◽  
...  

Abstract. Cryospheric changes in northern high latitudes are linked to significant greenhouse gas flux to the atmosphere, for example, methane that originates from organic matter decomposition in thermokarst lakes. The set of pathways that link methane production in sediments, via oxidation in the lake system, to the flux of residual methane to the atmosphere is complex and exhibits temporal and spatial variation. The isotopic signal of bacterial biomarkers (hopanoids, e.g. diploptene) in sediments has been used to identify contemporary ocean-floor methane seeps and, in the geological record, periods of enhanced methane production (e.g. the PETM). The biomarker approach could potentially be used to assess temporal changes in lake emissions through the Holocene via the sedimentary biomarker record. However, there are no data on the consistency of the signal of isotopic depletion in relation to source or on the amount of noise (unexplained variation) in biomarker values from modern lake sediments. We assessed methane oxidation as represented by the isotopic signal of biomarkers from methane oxidising bacteria (MOB) in multiple surface sediment samples in three distinct areas known to emit varying levels of methane in two shallow Alaskan thermokarst lakes. Diploptene was present and had δ13C values lower than −38 ‰ in all sediments analysed, suggesting methane oxidation was widespread. However, there was considerable variation in δ13C values within each area. The most 13C-depleted diploptene was found in an area of high methane ebullition in Ace Lake (diploptene δ13C values between −68.2 and −50.1 ‰). In contrast, significantly higher diploptene δ13C values (between −42.9 and −38.8 ‰) were found in an area of methane ebullition in Smith Lake. δ13C values of diploptene between −56.8 and −46.9 ‰ were found in the centre of Smith Lake, where ebullition rates are low but diffusive methane efflux occurs. The small-scale heterogeneity of the samples may reflect patchy distribution of substrate and/or MOB within the sediments. The two ebullition areas differ in age and type of organic carbon substrate, which may affect methane production, transport, and subsequent oxidation. Given the high amount of variation in surface samples, a more extensive calibration of modern sediment properties, within and among lakes, is required before down-core records of hopanoid isotopic signatures are developed.


2012 ◽  
Vol 60 (1) ◽  
pp. 46 ◽  
Author(s):  
Jenny Sprent ◽  
Stewart C. Nicol

The size of an animal’s home range is strongly influenced by the resources available within it. In productive, resource-rich habitats sufficient resources are obtainable within a smaller area, and for many species, home ranges are smaller in resource-rich habitats than in habitats with lower resource abundance. Location data on 14 male and 27 female echidnas (Tachyglossus aculeatus) fitted with tracking transmitters, in the southern midlands of Tasmania, were used to test the influence of habitat type on home-range size. We hypothesised that as woodland should offer more shelter, food resources and refuges than pasture, echidnas living in woodland would have smaller home ranges than those living in pasture areas. We found significant differences between the sexes. Male echidnas had a significantly larger mean home range than females and a quite different relationship between home-range size and habitat type from females. There was no relationship between the proportion of woodland within male home ranges and home-range size whereas female echidnas had a highly significant negative relationship. This suggests that home-range size of female echidnas is highly influenced by the amount of woodland within it, but the home-range size of male echidnas is controlled by factors other than habitat. This pattern is consistent with the spatial ecology of many other solitary species with a promiscuous mating system. The home ranges of females are scaled to encompass all necessary resources for successfully raising their young within a minimal area, whilst the large home ranges of males are scaled to maximise access to females.


Hydrobiologia ◽  
2018 ◽  
Vol 845 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Sophie Delerue-Ricard ◽  
Hanna Stynen ◽  
Léo Barbut ◽  
Fabien Morat ◽  
Kelig Mahé ◽  
...  

2014 ◽  
Vol 1073-1076 ◽  
pp. 619-627
Author(s):  
Fang She Yang ◽  
Shu Zhen Su ◽  
Juan Juan Zhang ◽  
Ci Fen Bi

In this paper, based on geostatistics and GIS techniques, spatial variation characteristics of soil organic matter (acronym: SOM) on a small scale were analyzed and discussed in east-one-branch gully (EG1) bed with the seabuckthorn flexible dam and the contrastive gully bed (which is non-vegetated any vegetation) located in zhun-ge-er county, Erdos, inner Mongolia, which belongs to the typical Pisha Sandstone area. The results show that the seabuckthorn can significantly increase SOM in the small catchment gully bed in the Pisha sandstone area, and the mean SOM content in gully bed with the seabuckthorn flexible dam is approximate 1.75 times that in the contrastive gully. Apparent spatial variation characteristics of SOM were found in the gully with the seabuckthorn flexible dam and the contrastive gully bed, moreover, the medium spatial autocorrelation of SOM was detected in gully bed with the seabuckthorn flexible dam, and the spatial variation of SOM was together led to by the structural and random variation at 1-6.5 m range, and of which the random variation accounts for 40%. Additional, the spatial autocorrelation of SOM in the contrastive gully bed is higher, the spatial variation of SOM was dominantly brought about by the structural variation at 1-4.5 m range, and of which the random variation accounts for 37%. Furthermore, the fractal dimension values reveal that dependence of SOM of the gully bed with the seabuckthorn flexible dam on spatial is weaker than that of the contrastive gully bed. It is judged that the seabuckthorn has an obvious effect on spatial distribution patterns and heterogeneity of SOM on a small scale.


2003 ◽  
Vol 33 (12) ◽  
pp. 2509-2513 ◽  
Author(s):  
Brian W Benscoter ◽  
R Kelman Wieder

Fire directly releases carbon (C) to the atmosphere through combustion of biomass. An estimated 1470 ± 59 km2 of peatland burns annually in boreal, western Canada, releasing 4.7 ± 0.6 Tg C to the atmosphere via direct combustion. We quantified within-site variation in organic matter lost via combustion in a bog peatland in association with the 116 000-ha Chisholm, Alberta, fire in 2001. We hypothesized that for peatlands with considerable small-scale microtopography (bogs and treed fens), hummocks will burn less than hollows. We found that hollows exhibit more combustion than hummocks, releasing nearly twice as much C to the atmosphere. Our results suggest that spatial variability in species composition and site hydrology within a landform and across a landscape could contribute to considerable spatial variation in the amounts of C released via combustion during peatland fire, although the magnitude of this variation may be dependent on fire severity.


2021 ◽  
Author(s):  
Cecile Vanpe ◽  
Blaise Piedallu ◽  
Pierre-Yves Quenette ◽  
Jerome Sentilles ◽  
Guillaume Queney ◽  
...  

Abundance of small populations of large mammals may be assessed using complete counts of the different individuals detected over a time period, so-called minimum detected size (MDS). However, as population is growing larger and its distribution is expanding wider, the risk of under-estimating population size using MDS is increasing sharply due to the rarely fulfilled assumption of perfect detection of all individuals of the population, and as a result, the need to report uncertainty in population size estimates becomes crucial. We addressed these issues within the framework of the monitoring of the critically endangered Pyrenean brown bear population that was on the edge of extinction in the mid-1990s with only five individuals remaining, but was reinforced by 11 bears originated from Slovenia since then. We used Pollock's closed robust design (PCRD) capture-recapture models applied to the cross-border non-invasive sampling data from France, Spain and Andorra to provide the first published annual abundance estimates of the Pyrenean brown bear population and its trends over time. Annual population size increased and displayed a fivefold rise between 2008 and 2020, reaching > 60 individuals in 2020. Detection heterogeneity among individuals may stem from intraspecific home range size disparities making it more likely to find signs of individuals who move more. We found a lower survival rate in cubs than in adults and subadults, since the formers suffer from more mortality risks (such as infanticides, predations, mother death or abandonments) than the latters. Our study provides evidence that the PCRD capture-recapture modelling approach can provide reliable estimates of the size of and trend in large mammal populations, while minimizing bias due to inter-individual heterogeneity in detection probabilities and allowing the quantification of sampling uncertainty surrounding these estimates. Such information is vital for informing management decision-making and assessing population conservation status.


Author(s):  
Tim Goodchild ◽  
Sam Chenery-Morris

This chapter will explore the introduction and development of podcasts at University Campus Suffolk (UCS). The podcasts discussed in this chapter have all been developed in relation to pre-registration health and social care courses within the Faculty of Health at UCS. UCS is a relatively new university, and has a wide range of professional courses including nursing, midwifery, radiography, operating department practice and social work. The chapter will begin with a discussion of where podcasts sit in the paradigm of mobile learning and then a brief history of podcasting. The introduction of podcasts at UCS has been ad-hoc and mostly in response to ideas for developing the wider student learning experience. This ad-hoc approach has led to the development of a model for their educational use. Three case studies will be outlined, followed by presentation of the model. These case studies will show how podcasts came to be utilised, and the progression of our thoughts and experiences which have informed their current and future development at UCS. Small scale evaluations throughout the developmental period, and informal student feedback have helped inform the progression of podcasting at UCS. These evaluations have driven the increased use of podcasts at UCS, with students enjoying the experience of using podcasts, and also the ability to digest the podcasts at a time of their choosing. However, it should be noted that because of the nature of the developmental process, full scale evaluative research is only now being undertaken.


Sign in / Sign up

Export Citation Format

Share Document