scholarly journals Identification of AtHsp90.6 involved in early embryogenesis and its structure prediction by molecular dynamics simulations

2019 ◽  
Vol 6 (5) ◽  
pp. 190219 ◽  
Author(s):  
An Luo ◽  
Xinbo Li ◽  
Xuecheng Zhang ◽  
Huadong Zhan ◽  
Hewei Du ◽  
...  

Heat-shock protein of 90 kDa (Hsp90) is a key molecular chaperone involved in folding the synthesized protein and controlling protein quality. Conformational dynamics coupled to ATPase activity in N-terminal domain is essential for Hsp90's function. However, the relevant process is still largely unknown in plant Hsp90s, especially those required for plant embryogenesis which is inextricably tied up with human survival. Here, AtHsp90.6, a member of Hsp90 family in Arabidopsis , was firstly identified as a protein essential for embryogenesis. Thus we modelled AtHsp90.6 in its functionally closed ‘lid-down’ and open ‘lid-up’ states, exploring the nucleotide binding mechanism in these two states. Free energy landscape and electrostatic potential analysis revealed the switching mechanism between these two states. Collectively, this study quantitatively analysed the conformational changes of AtHsp90.6 bound to ATP or ADP. This result may help us understand the mechanism of action of AtHsp90.6 in future.

Author(s):  
Balaji Selvam ◽  
Ya-Chi Yu ◽  
Liqing Chen ◽  
Diwakar Shukla

<p>The SWEET family belongs to a class of transporters in plants that undergoes large conformational changes to facilitate transport of sugar molecules across the cell membrane. However, the structures of their functionally relevant conformational states in the transport cycle have not been reported. In this study, we have characterized the conformational dynamics and complete transport cycle of glucose in OsSWEET2b transporter using extensive molecular dynamics simulations. Using Markov state models, we estimated the free energy barrier associated with different states as well as 1 for the glucose the transport mechanism. SWEETs undergoes structural transition to outward-facing (OF), Occluded (OC) and inward-facing (IF) and strongly support alternate access transport mechanism. The glucose diffuses freely from outside to inside the cell without causing major conformational changes which means that the conformations of glucose unbound and bound snapshots are exactly same for OF, OC and IF states. We identified a network of hydrophobic core residues at the center of the transporter that restricts the glucose entry to the cytoplasmic side and act as an intracellular hydrophobic gate. The mechanistic predictions from molecular dynamics simulations are validated using site-directed mutagenesis experiments. Our simulation also revealed hourglass like intermediate states making the pore radius narrower at the center. This work provides new fundamental insights into how substrate-transporter interactions actively change the free energy landscape of the transport cycle to facilitate enhanced transport activity.</p>


2018 ◽  
Author(s):  
Yong Wang ◽  
Pengfei Tian ◽  
Wouter Boomsma ◽  
Kresten Lindorff-Larsen

AbstractEnergy landscape theory suggests that native interactions are a major determinant of the folding mechanism of a protein. Thus, structure-based (Gō) models have, aided by coarse-graining techniques, shown great success in capturing the mechanisms of protein folding and conformational changes. In certain cases, however, non-native interactions and atomic details are also essential to describe the protein dynamics, prompting the development of a variety of structure-based models which include non-native interactions, and differentiate between different types of attractive potentials. Here, we describe an all-protein-atom hybrid model, termed ProfasiGo, that integrates an implicit solvent all-atom physics-based model (called Profasi) and a structure-based Gō potential, and its implementation in two software packages (PHAISTOS and ProFASi) that are developed for Monte Carlo sampling of protein molecules. We apply the ProfasiGo model to study the folding free energy landscapes of four topologically similar proteins, one of which can be folded by the simplified potential Profasi, and two that have been folded by explicit solvent, all-atom molecular dynamics simulations with the CHARMM22∗ force field. Our results reveal that the hybrid ProfasiGo model is able to capture many of the details present in the physics-based potentials, while retaining the advantages of Gō models for sampling and guiding to the native state. We expect that the model will be widely applicable to study the folding of more complex proteins, or to study conformational dynamics and integration with experimental data.


2019 ◽  
Author(s):  
Balaji Selvam ◽  
Ya-Chi Yu ◽  
Liqing Chen ◽  
Diwakar Shukla

<p>The SWEET family belongs to a class of transporters in plants that undergoes large conformational changes to facilitate transport of sugar molecules across the cell membrane. However, the structures of their functionally relevant conformational states in the transport cycle have not been reported. In this study, we have characterized the conformational dynamics and complete transport cycle of glucose in OsSWEET2b transporter using extensive molecular dynamics simulations. Using Markov state models, we estimated the free energy barrier associated with different states as well as 1 for the glucose the transport mechanism. SWEETs undergoes structural transition to outward-facing (OF), Occluded (OC) and inward-facing (IF) and strongly support alternate access transport mechanism. The glucose diffuses freely from outside to inside the cell without causing major conformational changes which means that the conformations of glucose unbound and bound snapshots are exactly same for OF, OC and IF states. We identified a network of hydrophobic core residues at the center of the transporter that restricts the glucose entry to the cytoplasmic side and act as an intracellular hydrophobic gate. The mechanistic predictions from molecular dynamics simulations are validated using site-directed mutagenesis experiments. Our simulation also revealed hourglass like intermediate states making the pore radius narrower at the center. This work provides new fundamental insights into how substrate-transporter interactions actively change the free energy landscape of the transport cycle to facilitate enhanced transport activity.</p>


2019 ◽  
Vol 20 (15) ◽  
pp. 3774 ◽  
Author(s):  
Nidhi Singh ◽  
Wenjin Li

Molecular dynamics simulations have emerged as a powerful tool to study biological systems at varied length and timescales. The conventional all-atom molecular dynamics simulations are being used by the wider scientific community in routine to capture the conformational dynamics and local motions. In addition, recent developments in coarse-grained models have opened the way to study the macromolecular complexes for time scales up to milliseconds. In this review, we have discussed the principle, applicability and recent development in coarse-grained models for biological systems. The potential of coarse-grained simulation has been reviewed through state-of-the-art examples of protein folding and structure prediction, self-assembly of complexes, membrane systems and carbohydrates fiber models. The multiscale simulation approaches have also been discussed in the context of their emerging role in unravelling hierarchical level information of biosystems. We conclude this review with the future scope of coarse-grained simulations as a constantly evolving tool to capture the dynamics of biosystems.


2019 ◽  
Author(s):  
Erika Chang de Azevedo ◽  
Alessandro S. Nascimento

AbstractStaphylococcus aureus is an important cause of resistant healthcare-associated infections. It has been shown that the Wall Teichoic Acid (WTA) may be an important drug target acting on antibiotic-resistant cells. The UDP-N-Acetylglucosamine 2-epimerase, MnaA, is one of the first enzymes on the pathway for the biosynthesis of the WTA. Here, detailed molecular dynamics simulations of S. aureus MnaA were used to characterize the conformational changes that occur in the presence of UDP and UDP-GlcNac and also the energetic landscape associated with these changes. Using different simulation techniques, such as ABMD and GAMD, it was possible to assess the energetic profile for the protein with and without ligands in its active site. We found that there is a dynamic energy landscape that has its minimum changed by the presence of the ligands, with a closed structure of the enzyme being more frequently observed for the bound state while the unbound enzyme favors an opened conformation. Further structural analysis indicated that positively charged amino acids associated with UDP and UDP-GlcNac interactions play a major role in the enzyme opening movement. Finally, the energy landscape profiled in this work provides important conclusions for the design of inhibitor candidates targeting S. aureus MnaA.


2018 ◽  
Author(s):  
D. R. Kattnig ◽  
C. Nielsen ◽  
I. A. Solov’yov

AbstractBirds appear to be equipped with a light-dependent, radical-pair-based magnetic compass that relies on truly quantum processes. While the identity of the sensory protein has remained speculative, cryptochrome 4 has recently been identified as the most auspicious candidate. Here, we report on allatom molecular dynamics (MD) simulations addressing the structural reorganisations that accompany the photoreduction of the flavin cofactor in a model of the European robin cryptochrome 4 (ErCry4). Extensive MD simulations reveal that the photo-activation of ErCry4 induces large-scale conformational changes on short (hundreds of nanoseconds) timescales. Specifically, the photo-reduction is accompanied with the release of the C-terminal tail, structural rearrangements in the vicinity of the FAD-binding site, and the noteworthy formation of an α-helical segment at the N-terminal part. Some of these rearrangements appear to expose potential phosphorylation sites. We describe the conformational dynamics of the protein using a graph-based approach that is informed by the adjacency of residues and the correlation of their local motions. This approach reveals densely coupled reorganisation communities, which facilitate an efficient signal transduction due to a high density of hubs. These communities are interconnected by a small number of highly important residues characterized by high betweenness centrality. The network approach clearly identifies the sites restructuring upon photoactivation, which appear as protrusions or delicate bridges in the reorganisation network. We also find that, unlike in the homologous cryptochrome from D. melanogaster, the release of the C-terminal domain does not appear to be correlated with the transposition of a histidine residue close to the FAD cofactor.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Ximena Steinberg ◽  
Marina A Kasimova ◽  
Deny Cabezas-Bratesco ◽  
Jason D Galpin ◽  
Ernesto Ladron-de-Guevara ◽  
...  

TRPV1 channels support the detection of noxious and nociceptive input. Currently available functional and structural data suggest that TRPV1 channels have two gates within their permeation pathway: one formed by a ′bundle-crossing′ at the intracellular entrance and a second constriction at the selectivity filter. To describe conformational changes associated with channel gating, the fluorescent non-canonical amino acid coumarin-tyrosine was genetically encoded at Y671, a residue proximal to the selectivity filter. Total internal reflection fluorescence microscopy was performed to image the conformational dynamics of the channels in live cells. Photon counts and optical fluctuations from coumarin encoded within TRPV1 tetramers correlates with channel activation by capsaicin, providing an optical marker of conformational dynamics at the selectivity filter. In agreement with the fluorescence data, molecular dynamics simulations display alternating solvent exposure of Y671 in the closed and open states. Overall, the data point to a dynamic selectivity filter that may serve as a gate for permeation.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 6006
Author(s):  
Juan Xing ◽  
Shuheng Huang ◽  
Yu Heng ◽  
Hu Mei ◽  
Xianchao Pan

The ATP-binding cassette (ABC) transporter P-glycoprotein (P-gp) is a physiologically essential membrane protein that protects many tissues against xenobiotic molecules, but limits the access of chemotherapeutics into tumor cells, thus contributing to multidrug resistance. The atomic-level mechanism of how substrates and inhibitors differentially affect the ATP hydrolysis by P-gp remains to be elucidated. In this work, atomistic molecular dynamics simulations in an explicit membrane/water environment were performed to explore the effects of substrate and inhibitor binding on the conformational dynamics of P-gp. Distinct differences in conformational changes that mainly occurred in the nucleotide-binding domains (NBDs) were observed from the substrate- and inhibitor-bound simulations. The binding of rhodamine-123 can increase the probability of the formation of an intermediate conformation, in which the NBDs were closer and better aligned, suggesting that substrate binding may prime the transporter for ATP hydrolysis. By contrast, the inhibitor QZ-Leu stabilized NBDs in a much more separated and misaligned conformation, which may result in the deficiency of ATP hydrolysis. The significant differences in conformational modulation of P-gp by substrate and inhibitor binding provided a molecular explanation of how these small molecules exert opposite effects on the ATPase activity. A further structural analysis suggested that the allosteric communication between transmembrane domains (TMDs) and NBDs was primarily mediated by two intracellular coupling helices. Our computational simulations provide not only valuable insights into the transport mechanism of P-gp substrates, but also for the molecular design of P-gp inhibitors.


2019 ◽  
Author(s):  
Antonio N. Calabrese ◽  
Bob Schiffrin ◽  
Matthew Watson ◽  
Theodoros K. Karamanos ◽  
Martin Walko ◽  
...  

AbstractThe periplasmic chaperone SurA plays a key role in outer membrane protein (OMP) biogenesis. E. coli SurA comprises a core domain and two peptidylprolyl isomerase domains (P1 and P2), but how it binds its OMP clients and the mechanism(s) of its chaperone action remain unclear. Here, we have used chemical cross-linking, hydrogen-deuterium exchange, single-molecule FRET and molecular dynamics simulations to map the client binding site(s) on SurA and to interrogate the role of conformational dynamics of the chaperone’s domains in OMP recognition. We demonstrate that SurA samples a broad array of conformations in solution in which P2 primarily lies closer to the core/P1 domains than suggested by its crystal structure. Multiple binding sites for OMPs are located primarily in the core domain, with binding of the unfolded OMP resulting in conformational changes between the core/P1 domains. Together, the results portray a model in which unfolded OMP substrates bind in a cradle formed between the SurA domains, with structural flexibility between its domains assisting OMP recognition, binding and release.


2020 ◽  
Vol 295 (34) ◽  
pp. 11995-12001
Author(s):  
Yangang Pan ◽  
Luda S. Shlyakhtenko ◽  
Yuri L. Lyubchenko

Vif (viral infectivity factor) is a protein that is essential for the replication of the HIV-1 virus. The key function of Vif is to disrupt the antiviral activity of host APOBEC3 (apolipoprotein B mRNA-editing enzyme catalytic subunit 3) proteins, which mutate viral nucleic acids. Inside the cell, Vif binds to the host cell proteins Elongin-C, Elongin-B, and core-binding factor subunit β, forming a four-protein complex called VCBC. The structure of VCBC–Cullin5 has recently been solved by X-ray crystallography, and, using molecular dynamics simulations, the dynamics of VCBC have been characterized. Here, we applied time-lapse high-speed atomic force microscopy to visualize the conformational changes of the VCBC complex. We determined the three most favorable conformations of this complex, which we identified as the triangle, dumbbell, and globular structures. Moreover, we characterized the dynamics of each of these structures. Our data revealed the very dynamic behavior of all of them, with the triangle and dumbbell structures being the most dynamic. These findings provide insight into the structure and dynamics of the VCBC complex and may support efforts to improve HIV treatment, because Vif is essential for virus survival in the cell.


Sign in / Sign up

Export Citation Format

Share Document