scholarly journals Unusual lizard fossil from the Miocene of Nebraska and a minimum age for cnemidophorine teiids

2020 ◽  
Vol 7 (8) ◽  
pp. 200317 ◽  
Author(s):  
Simon G. Scarpetta

Teiid lizards are well represented in the fossil record and are common components of modern ecosystems in North and South America. Many fossils were referred to the cnemidophorine teiid group (whiptails, racerunners and relatives), particularly from North America. However, systematic interpretations of morphological features in cnemidophorines were hampered by the historically problematic taxonomy of the clade, and the biogeography and chronology of cnemidophorine evolution in North America is poorly understood from the fossil record. Few fossil cnemidophorines were identified with an apomorphy-based diagnosis, and there are almost no fossil cnemidophorines that could be used to anchor node calibrations. Here, I describe a cnemidophorine from the Miocene Ogallala Group of Nebraska and diagnose the fossil using apomorphies. In that process, I clarify the systematic utility of several morphological features of cnemidophorine lizards. I refer the fossil to the least inclusive clade containing Aspidoscelis , Holcosus and Pholidoscelis . The most conservative minimum age of the locality of the fossil is a fission-track date of 6.3 Ma, but mammal biochronology provides a more refined age of 9.4 Ma, which can be used as a minimum age for the crown cnemidophorine clade in divergence time analyses. The fossil indicates that a cnemidophorine lineage that does not live in Nebraska today inhabited the area during the Miocene. I refrain from naming a new taxon pending discovery of additional fossil material of the lineage to which the fossil belonged.

Author(s):  
Alexandra N. Muellner-Riehl ◽  
Blanca M. Rojas-Andrés

AbstractWe here provide, first, a general introduction into the woody angiosperm family Meliaceae, including updated numbers of the genera and species found in different parts of the globe, paying attention to geographic centres of diversity and patterns of endemism. Second, and more specifically, we review the latest literature concerning land connections (i) between Eurasia and North America, (ii) between North America and South America, as well as (iii) dispersal paths between Africa and South America that have existed since the proposed evolutionary origin of modern Meliaceae, i.e. from the Upper Cretaceous onwards (ca. 100 Million years ago). Comparing geological evidence with the fossil record as well as biogeographic studies, there is indication that the nowadays pantropically distributed family has made use of all these three routes. Five out of the eight modern Neotropical genera have a fossil record, namely Carapa Aubl., Cedrela P. Browne, Guarea F. Allam., Swietenia Jacq., and Trichilia P. Browne. Carapa and Trichilia have a modern transatlantic disjunction (distribution in Africa, Central and South America), and a fossil record in Africa and North/Central America (Trichilia), or Africa and Eurasia (Carapoxylon). Cedrela has a rich fossil record in Eurasia and the Americas. The global decrease in temperatures and a lack of Cedrela fossils in North America from the Late Miocene onwards suggest the genus had gone extinct there by that time, leading to its modern distribution in Central and South America. Oligocene to Pliocene fossils of Guarea, Swietenia and Trichilia in Central American key regions support biotic interchange between North and South America at various times.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2502 ◽  
Author(s):  
Walter G. Joyce ◽  
Tyler R. Lyson ◽  
James I. Kirkland

BackgroundBothremydidae is a clade of extinct pleurodiran turtles known from the Cretaceous to Paleogene of Africa, Europe, India, Madagascar, and North and South America. The group is most diverse during the Late Cretaceous to Paleogene of Africa. Little is known, however, about the early evolution of the group.MethodsWe here figure and describe a fossil turtle from early Late Cretaceous deposits exposed at MacFarlane Mine in Cedar Canyon, southwestern Utah, USA. The sediments associated with the new turtle are utilized to infer its stratigraphic provenience and the depositional settings in which it was deposited. The fossil is compared to previously described fossil pleurodires, integrated into a modified phylogenetic analysis of pelomedusoid turtles, and the biogeography of bothremydid turtles is reassessed. In light of the novel phylogenetic hypotheses, six previously established taxon names are converted to phylogenetically defined clade names to aid communication.ResultsThe new fossil turtle can be inferred with confidence to have originated from a brackish water facies within the late Cenomanian Culver Coal Zone of the Naturita Formation. The fossil can be distinguished from all other previously described pleurodires and is therefore designated as a new taxon,Paiutemys tibertgen. et. sp. nov. Phylogenetic analysis places the new taxon as sister to the EuropeanPolysternon provinciale,Foxemys trabantiandFoxemys mechinorumat the base of Bothremydinae. Biogeographic analysis suggests that bothremydids originated as continental turtles in Gondwana, but that bothremydines adapted to near-shore marine conditions and therefore should be seen as having a circum-Atlantic distribution.


2019 ◽  
Vol 187 (3) ◽  
pp. 782-799 ◽  
Author(s):  
Andrej Čerňanský

Abstract Dibamid reptiles have a known current distribution on two continents (Asia and North America). Although this clade represents an early-diverging group in the Squamata and thus should have a long evolutionary history, no fossil record of these peculiar burrowing squamate reptiles has been documented so far. The fossil material described here comes from the early Oligocene of the Valley of Lakes in Central Mongolia. This material consists of jaws and is placed in the clade Dibamidae on the basis of its morphology, which is further confirmed by phylogenetic analyses. In spite of the fragmentary nature of this material, it thus forms the first, but putative, fossil evidence of this clade. If correctly interpreted, this material demonstrates the occurrence of Dibamidae in East Asia in the Palaeogene, indicating its distribution in higher latitudes than today. The preserved elements possess a unique combination of character states, and a new taxon name is therefore erected: Hoeckosaurus mongoliensis sp. nov. The dentary of Hoeckosaurus exhibits some characters of the two extant dibamid taxa. However, the open Meckel’s groove, together with other characters, show that this group was morphologically much more diverse in the past.


2020 ◽  
Vol 8 ◽  
Author(s):  
Grace Musser ◽  
Julia A. Clarke

The stem lineage relationships and early phenotypic evolution of Charadriiformes (shorebirds) and Gruiformes (rails, cranes, and allies) remain unresolved. It is still debated whether these clades are sister-taxa. New phylogenetic analyses incorporating Paleogene fossils have the potential to reveal the evolutionary connections of these two speciose and evolutionarily critical neoavian subclades. Although Gruiformes have a rich Paleogene fossil record, most of these fossils have not been robustly placed. The Paleogene fossil record of Charadriiformes is scarce and largely consists of fragmentary single elements. Only one proposed Eocene charadriiform-like taxon, Scandiavis mikkelseni of Denmark, is represented by a partial skeleton. Here, we describe a new species from the early Eocene Green River Formation of North America comprising a partial skeleton and feather remains. Because the skeleton lacks the pectoral girdle and forelimbs as in S. mikkelseni, only features of the skull, axial skeleton, and hind limb are available to resolve the phylogenetic placement of this taxon. These anatomical subregions initially showed features seen in Charadriiformes and Gruiformes. To assess placement of this taxon, we use a matrix consisting of 693 morphological characters and 60 taxa, including S. mikkelseni and the oldest known charadriiform taxa represented by single elements. These more fragmentary records comprise two distal humeri from the earliest Eocene Naranbulag Formation of Mongolia and the early Eocene Nanjemoy Formation of Virginia. Our phylogenetic analyses recover the new taxon and S. mikkelseni alternatively as a charadriiform or as a stem-gruiform; placement is contingent upon enforced relationships for major neoavian subclades recovered by recent molecular-based phylogenies. Specifically, when constraint trees based on results that do not recover Charadriiformes and Gruiformes as sister-taxa are used, the new taxon and S. mikkelseni are recovered within stem Gruiformes. Both Paleogene fossil humeri are consistently recovered within crown Charadriiformes. If placement of these humeri or the new taxon as charadriiforms are correct, this may indicate that recent divergence time analyses have underestimated the crown age of another major crown avian subclade; however, more complete sampling of these taxa is necessary, especially of more complete specimens with pectoral elements.


2010 ◽  
Vol 29 (2) ◽  
pp. 163-176 ◽  
Author(s):  
Benjamin Sames ◽  
Robin Whatley ◽  
Michael E. Schudack

Abstract. The genus Praecypridea gen. nov. (Cypridoidea, Family Cyprideidae Martin, 1940) is described and thus far comprises four species: the type species Praecypridea acuticyatha (Schudack, 1998) comb. nov., Praecypridea postelongata (Oertli, 1957) comb. nov., Praecypridea suprajurassica (Mojon, Haddoumi & Charriére, 2009) comb. nov. and Praecypridea acuta (Moos, 1959 in Wicher, 1959) comb. nov. Representatives of the new genus have been described from the Middle to Late Jurassic of Europe, North America and Africa and the Early Cretaceous of South America, with other presumed representatives also occurring in the Early Cretaceous. Species of Praecypridea are considered to represent members of the ancestral lineage of the extinct genus Cypridea Bosquet, representatives of which flourished in non-marine habitats of latest Jurassic to Early Cretaceous age and account for the first period of abundance of the non-marine Cypridoidea.


2017 ◽  
Vol 284 (1847) ◽  
pp. 20161902 ◽  
Author(s):  
David G. DeMar ◽  
Jack L. Conrad ◽  
Jason J. Head ◽  
David J. Varricchio ◽  
Gregory P. Wilson

Iguanomorpha (stem + crown Iguania) is a diverse squamate clade with members that predominate many modern American lizard ecosystems. However, the temporal and palaeobiogeographic origins of its constituent crown clades (e.g. Pleurodonta (basilisks, iguanas, and their relatives)) are poorly constrained, mainly due to a meagre Mesozoic-age fossil record. Here, we report on two nearly complete skeletons from the Late Cretaceous (Campanian) of North America that represent a new and relatively large-bodied and possibly herbivorous iguanomorph that inhabited a semi-arid environment. The new taxon exhibits a mosaic of anatomical features traditionally used in diagnosing Iguania and non-iguanian squamates (i.e. Scleroglossa; e.g. parietal foramen at the frontoparietal suture, astragalocalcaneal notch in the tibia, respectively). Our cladistic analysis of Squamata revealed a phylogenetic link between Campanian-age North American and East Asian stem iguanomorphs (i.e. the new taxon + Temujiniidae). These results and our evaluation of the squamate fossil record suggest that crown pleurodontans were restricted to the low-latitude Neotropics prior to their early Palaeogene first appearances in the mid-latitudes of North America.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4123 ◽  
Author(s):  
Chase D. Brownstein

During the Late Cretaceous, the continent of North America was divided into two sections: Laramidia in the west and Appalachia in the east. Although the sediments of Appalachia recorded only a sparse fossil record of dinosaurs, the dinosaur faunas of this landmass were different in composition from those of Laramidia. Represented by at least two taxa (Appalachiosaurus montgomeriensis and Dryptosaurus aquilunguis), partial and fragmentary skeletons, and isolated bones, the non-tyrannosaurid tyrannosauroids of the landmass have attracted some attention. Unfortunately, these eastern tyrants are poorly known compared to their western contemporaries. Here, one specimen, the partial metatarsus of a tyrannosauroid from the Campanian Merchantville Formation of Delaware, is described in detail. The specimen can be distinguished from A. montgomeriensis and D. aquilunguis by several morphological features. As such, the specimen represents a potentially previously unrecognized taxon of tyrannosauroid from Appalachia, increasing the diversity of the clade on the landmass. Phylogenetic analysis and the morphology of the bones suggest the Merchantville specimen is a tyrannosauroid of “intermediate” grade, thus supporting the notion that Appalachia was a refugium for relict dinosaur clades.


2016 ◽  
Author(s):  
Chase Doran Brownstein

The fossil record of dinosaurs from the Early Cretaceous of eastern North America is scant, and only a few sediments to the east of the continent are fossiliferous. Among them is the Arundel Formation of the east coast of the United States, which has produced among the best dinosaur faunas known from the Early Cretaceous of eastern North America. The diverse dinosaur fauna of this formation has been thoroughly discussed previously, but few of the dinosaur species originally described from the Arundel are still regarded as valid genera. Much of the Arundel material is in need of review and redescription. Among the fossils of dinosaurs from this formation are those referred to ornithomimosaurs. Here, I redescribe ornithomimosaur remains from the Arundel Formation which may warrant the naming of a new taxon of dinosaur. These remains provide key information on the theropods of the Early Cretaceous of Eastern North America. The description of the Arundel material herein along with recent discoveries of basal ornithomimosaurs in the past 15 years has allowed for comparisons with the coelurosaur Nedcolbertia justinhofmanni, suggesting the latter animal was a basal ornithomimosaurian dinosaur rather than a “generalized” coelurosaur. Comparisons between the Arundel ornithomimosaur and similar southeast Asian ornithomimosaurian material as well as ornithomimosaur remains from western North America suggest that a lineage of ornithomimosaurs with a metatarsal condition intermediate between that of basal and derived ornithomimosaurs was present through southeast Asia into North America, in turn suggesting that such animals coexisted with genera having a more primitive metatarsal morphology as seen in N. justinhofmanni.


1987 ◽  
Vol 94 (3-4) ◽  
pp. 333-335
Author(s):  
Lynn Siri Kimsey

The chrysidid tribe Elampini comprises a diverse group of genera. There are a number of small (1-3 species) highly derived genera in this group. Nearly all of these occur in 2 regions, southwestern North America and the area comprising the Middle East, southern USSR and North Africa. The small North American genera are Hedychreides Bohart, Microchridium Bohart, Minymischa Kimsey, Pseudolopyga Bodenstein and Xerochrum Bobart. Those in the latter region include: Haba Semenov, Prochridium Linsenmaier and the new genus, Adelopyga, described below. One genus, Muesebeckidium Krombein, occurs in both North and South America.The following abbreviations are used: F = flagellomere, MOD = midocellus diameter, PD = puncture diameter, Rs = forewing radial sector, and S = gastral sternum.


2017 ◽  
Author(s):  
Chase D Brownstein

For almost the entirely of the latter half of the Cretaceous, the continent of North America was divided into two sections, Laramidia in the west and Appalachia in the east. Unfortunately, this latter landmass recorded only a sparse fossil record of dinosaurs, obscuring those forms which must have occupied the eastern portion of North America during this time. Appalachian dinosaur faunas, though obscure, do seem to be different in composition from Laramidian ones. One particular element of Appalachian faunas that has attracted significant attention are the non-tyrannosaurid tyrannosauroids of the continent. Tyrannosauroids on Appalachia, though represented by at least two taxa (Appalachiosaurus montgomeriensis and Dryptosaurus aquilunguis), as well as many partial and fragmentary skeletons and elements, are nevertheless poorly know when compared to their western contemporaries. Here, one specimen, the partial metatarsus of a tyrannosauroid from the Campanian Merchantville Formation of New Jersey, is described in detail. The specimen may be differentiated from Appalachiosaurus montgomeriensis, Dryptosaurus aquilunguis, and an unnamed specimen from the Maastrichtian of New Jersey by several notable morphological features outside the spectrum of individual variation, as well as by factoring in biogeographical considerations. The new specimen thus has significance for representing a new morphotype of tyrannosauroid from Appalachia, suggesting greater diversity of the clade on the landmass. Because of this, tyrannosaur diversity in the Campanian of Appalachia was compared to the diversity of tyrannosaurs in Laramidia during the same period to analyze the similarities and differences between the biogeography of tyrannosaurs on each landmass. The results suggest that Appalachian non-tyrannosaurid tyrannosauroids experienced a similar amount of diversity to tyrannosaurids in Laramidia during the Campanian.


Sign in / Sign up

Export Citation Format

Share Document