scholarly journals Structure and vibrational spectroscopy of lithium and potassium methanesulfonates

2020 ◽  
Vol 7 (7) ◽  
pp. 200776
Author(s):  
Stewart F. Parker ◽  
Emilie J. Revill-Hivet ◽  
Daniel W. Nye ◽  
Matthias J. Gutmann

In this work, we have determined the structures of lithium methanesulfonate, Li(CH 3 SO 3 ), and potassium methanesulfonate, K(CH 3 SO 3 ), and analysed their vibrational spectra. The lithium salt crystallizes in the monoclinic space group C 2/ m with two formula units in the primitive cell. The potassium salt is more complex, crystallizing in I 4/ m with 12 formula units in the primitive cell. The lithium ion is fourfold coordinated in a distorted tetrahedron, while the potassium salt exhibits three types of coordination: six-, seven- and ninefold. Vibrational spectroscopy of the compounds (including the 6 Li and 7 Li isotopomers) confirms that the correlation previously found, that in the infrared spectra there is a clear distinction between coordinated and not coordinated forms of the methanesulfonate ion, is also valid here. The lithium salt shows a clear splitting of the asymmetric S–O stretch mode, indicating a bonding interaction, while there is no splitting in the spectrum of the potassium salt, consistent with a purely ionic material.

2013 ◽  
Vol 12 (10) ◽  
pp. 719-726
Author(s):  
R. Ayadi ◽  
Mohamed Boujelbene ◽  
T. Mhiri

The present paper is interested in the study of compounds from the apatite family with the general formula Ca10 (PO4)6A2. It particularly brings to light the exploitation of the distinctive stereochemistries of two Ca positions in apatite. In fact, Gd-Bearing oxyapatiteCa8 Gd2 (PO4)6O2 has been synthesized by solid state reaction and characterized by X-ray powder diffraction. The site occupancies of substituents is0.3333 in Gd and 0.3333 for Ca in the Ca(1) position and 0. 5 for Gd in the Ca (2) position.  Besides, the observed frequencies in the Raman and infrared spectra were explained and discussed on the basis of unit-cell group analyses.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1206
Author(s):  
Xuansen Fang ◽  
Yaolong He ◽  
Xiaomin Fan ◽  
Dan Zhang ◽  
Hongjiu Hu

The prediction of electrochemical performance is the basis for long-term service of all-solid-state-battery (ASSB) regarding the time-aging of solid polymer electrolytes. To get insight into the influence mechanism of electrolyte aging on cell fading, we have established a continuum model for quantitatively analyzing the capacity evolution of the lithium battery during the time-aging process. The simulations have unveiled the phenomenon of electrolyte-aging-induced capacity degradation. The effects of discharge rate, operating temperature, and lithium-salt concentration in the electrolyte, as well as the electrolyte thickness, have also been explored in detail. The results have shown that capacity loss of ASSB is controlled by the decrease in the contact area of the electrolyte/electrode interface at the initial aging stage and is subsequently dominated by the mobilities of lithium-ion across the aging electrolyte. Moreover, reducing the discharge rate or increasing the operating temperature can weaken this cell deterioration. Besides, the thinner electrolyte film with acceptable lithium salt content benefits the durability of the ASSB. It has also been found that the negative effect of the aging electrolytes can be relieved if the electrolyte conductivity is kept being above a critical value under the storage and using conditions.


2021 ◽  
Vol 54 (2) ◽  
pp. 874-887
Author(s):  
Liping Yu ◽  
Yong Zhang ◽  
Jirong Wang ◽  
Huihui Gan ◽  
Shaoqiao Li ◽  
...  

2021 ◽  
Vol 23 (39) ◽  
pp. 22241-22245
Author(s):  
Zihui Song ◽  
Xudong Liu ◽  
Anish Ochani ◽  
Suling Shen ◽  
Qiqi Li ◽  
...  

In this report, the strong-dependence of low-frequency (terahertz) vibrational dynamics on weak and long-range forces in crystals is leveraged to determine the bulk magnetic configuration of iron phosphate – a promising material for cathodes in lithium ion batteries.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1237 ◽  
Author(s):  
Yu Jiang ◽  
Xuemin Yan ◽  
Zhaofei Ma ◽  
Ping Mei ◽  
Wei Xiao ◽  
...  

Solid polymer electrolytes (SPEs) have attracted considerable attention due to the rapid development of the need for more safety and powerful lithium ion batteries. The prime requirements of solid polymer electrolytes are high ion conductivity, low glass transition temperature, excellent solubility to the conductive lithium salt, and good interface stability against Li anode, which makes PEO and its derivatives potential candidate polymer matrixes. This review mainly encompasses on the synthetic development of PEO-based SPEs (PSPEs), and the potential application of the resulting PSPEs for high performance, all-solid-state lithium ion batteries.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Qolby Sabrina ◽  
Titik Lestariningsih ◽  
Christin Rina Ratri ◽  
Achmad Subhan

Solid polymer electrolyte (SPE) appropriate to solve packaging leakage and expansion volume in lithium-ion battery systems. Evaluation of electrochemical performance of SPE consisted of mixture lithium salt, solid plasticizer, and polymer precursor with different ratio. Impedance spectroscopy was used to investigate ionic conduction and dielectric response lithium bis(trifluoromethane)sulfony imide (LiTFSI) salt, and additive succinonitrile (SCN) plasticizer. The result showing enhanced high ionic conductivity. In half-cell configurations, wide electrochemical stability window of the SPE has been tested. Have stability window at room temperature, indicating great potential of SPE for application in lithium ion batteries. Additive SCN contribute to forming pores that make it easier for the li ion to move from the anode to the cathode and vice versa for better perform SPE. Pore of SPE has been charaterization with FE-SEM. Additive 5% w.t SCN shows the best ionic conductivity with 4.2 volt wide stability window and pretty much invisible pores.


2016 ◽  
Vol 18 (24) ◽  
pp. 16274-16280 ◽  
Author(s):  
P. Jankowski ◽  
W. Wieczorek ◽  
P. Johansson

A new lithium salt design concept, based on anions combining a central boron atom and conjugated ligands, is presented.


Sign in / Sign up

Export Citation Format

Share Document