scholarly journals Large-scale spatial variabilities in the humpback whale acoustic presence in the Atlantic sector of the Southern Ocean

2020 ◽  
Vol 7 (12) ◽  
pp. 201347
Author(s):  
Elena Schall ◽  
Karolin Thomisch ◽  
Olaf Boebel ◽  
Gabriele Gerlach ◽  
Stefanie Spiesecke ◽  
...  

Southern Hemisphere humpback whales ( Megaptera novaeangliae ) inhabit a wide variety of ecosystems including both low- and high-latitude areas. Understanding the habitat selection of humpback whale populations is key for humpback whale stock management and general ecosystem management. In the Atlantic sector of the Southern Ocean ( ASSO ), the investigation of baleen whale distribution by sighting surveys is temporally restricted to the austral summer. The implementation of autonomous passive acoustic monitoring, in turn, allows the study of vocal baleen whales year-round. This study describes the results of analysing passive acoustic data spanning 12 recording positions throughout the ASSO applying a combination of automatic and manual analysis methods to register humpback whale acoustic activity. Humpback whales were present at nine recording positions with higher acoustic activities towards lower latitudes and the eastern and western edges of the ASSO . During all months, except December (the month with the fewest recordings), humpback whale acoustic activity was registered in the ASSO . The acoustic presence of humpback whales at various locations in the ASSO confirms previous observations that part of the population remains in high-latitude waters beyond austral summer, presumably to feed. The spatial and temporal extent of humpback whale presence in the ASSO suggests that this area may be used by multiple humpback whale breeding populations as a feeding ground.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Elena Schall ◽  
Karolin Thomisch ◽  
Olaf Boebel ◽  
Gabriele Gerlach ◽  
Sari Mangia Woods ◽  
...  

AbstractHumpback whales are thought to undertake annual migrations between their low latitude breeding grounds and high latitude feeding grounds. However, under specific conditions, humpback whales sometimes change their migratory destination or skip migration overall. Here we document the surprising persistent presence of humpback whales in the Atlantic sector of the Southern Ocean during five years (2011, 2012, 2013, 2017, and 2018) using passive acoustic data. However, in the El Niño years 2015 and 2016, humpback whales were virtually absent. Our data show that humpback whales are systematically present in the Atlantic sector of the Southern Ocean and suggest that these whales are particularly sensitive to climate oscillations which have profound effects on winds, sea ice extent, primary production, and especially krill productivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. C. C. Marcondes ◽  
T. Cheeseman ◽  
J. A. Jackson ◽  
A. S. Friedlaender ◽  
L. Pallin ◽  
...  

AbstractHumpback whales (Megaptera novaeangliae) are a cosmopolitan species and perform long annual migrations between low-latitude breeding areas and high-latitude feeding areas. Their breeding populations appear to be spatially and genetically segregated due to long-term, maternally inherited fidelity to natal breeding areas. In the Southern Hemisphere, some humpback whale breeding populations mix in Southern Ocean waters in summer, but very little movement between Pacific and Atlantic waters has been identified to date, suggesting these waters constituted an oceanic boundary between genetically distinct populations. Here, we present new evidence of summer co-occurrence in the West Antarctic Peninsula feeding area of two recovering humpback whale breeding populations from the Atlantic (Brazil) and Pacific (Central and South America). As humpback whale populations recover, observations like this point to the need to revise our perceptions of boundaries between stocks, particularly on high latitude feeding grounds. We suggest that this “Southern Ocean Exchange” may become more frequent as populations recover from commercial whaling and climate change modifies environmental dynamics and humpback whale prey availability.


2021 ◽  
Vol 13 (11) ◽  
pp. 2074
Author(s):  
Ryan R. Reisinger ◽  
Ari S. Friedlaender ◽  
Alexandre N. Zerbini ◽  
Daniel M. Palacios ◽  
Virginia Andrews-Goff ◽  
...  

Machine learning algorithms are often used to model and predict animal habitat selection—the relationships between animal occurrences and habitat characteristics. For broadly distributed species, habitat selection often varies among populations and regions; thus, it would seem preferable to fit region- or population-specific models of habitat selection for more accurate inference and prediction, rather than fitting large-scale models using pooled data. However, where the aim is to make range-wide predictions, including areas for which there are no existing data or models of habitat selection, how can regional models best be combined? We propose that ensemble approaches commonly used to combine different algorithms for a single region can be reframed, treating regional habitat selection models as the candidate models. By doing so, we can incorporate regional variation when fitting predictive models of animal habitat selection across large ranges. We test this approach using satellite telemetry data from 168 humpback whales across five geographic regions in the Southern Ocean. Using random forests, we fitted a large-scale model relating humpback whale locations, versus background locations, to 10 environmental covariates, and made a circumpolar prediction of humpback whale habitat selection. We also fitted five regional models, the predictions of which we used as input features for four ensemble approaches: an unweighted ensemble, an ensemble weighted by environmental similarity in each cell, stacked generalization, and a hybrid approach wherein the environmental covariates and regional predictions were used as input features in a new model. We tested the predictive performance of these approaches on an independent validation dataset of humpback whale sightings and whaling catches. These multiregional ensemble approaches resulted in models with higher predictive performance than the circumpolar naive model. These approaches can be used to incorporate regional variation in animal habitat selection when fitting range-wide predictive models using machine learning algorithms. This can yield more accurate predictions across regions or populations of animals that may show variation in habitat selection.


2020 ◽  
pp. 95-99
Author(s):  
Judith Allen ◽  
Carole Carlson ◽  
Peter T. Stevick

The Antarctic Humpback Whale Catalogue (AHWC) is an international collaborative project investigating movement patterns of humpback whales in the Southern Ocean and corresponding lower latitude waters. The collection contains records contributed by 261 researchers and opportunistic sources. Photographs come from all of the Antarctic management areas, the feeding grounds in southern Chile and also most of the known or suspected low-latitude breeding areas and span more than two decades. This allows comparisons to be made over all of the major regions used by  Southern Hemisphere humpback whales. The fluke, left dorsal fin/flank and right dorsal fin/flank collections represent 3,655, 413 and 407 individual whales respectively. There were 194 individuals resighted in more than one year, and 82 individuals resighted in more than one region. Resightings document movement along the western coast of South America and movement between the Antarctic Peninsula and western coast of South America and Central America. A single individual from Brazil was resighted off South Georgia, representing the first documented link between the Brazilian breeding ground and any feeding area. A second individual from Brazil was resighted off Madagascar, documenting long distance movement of a female between non-adjacent breeding areas. Resightings also include two matches between American Samoa and the Antarctic Peninsula, documenting the first known feeding site for American Somoa and setting a new long distance seasonal migration record. Three matches between Sector V and eastern Australia support earlier evidence provided by Discovery tags. Multiple resightings of individuals in the Antarctic Peninsula during more than one season indicate that humpback whales in this area show some degree of regional feeding area fidelity. The AHWC provides a powerful non-lethal and non-invasive tool for investigating the movements and population structure of the whales utilising the Southern Ocean Sanctuary. Through this methodical, coordinated comparison and maintenance of collections from across the hemisphere, large-scale movement patterns may be examined, both within the Antarctic, and from the Antarctic to breeding grounds at low latitudes.


2011 ◽  
Vol 58 (25-26) ◽  
pp. 2733-2748 ◽  
Author(s):  
K. Bluhm ◽  
P.L. Croot ◽  
O. Huhn ◽  
G. Rohardt ◽  
K. Lochte

2021 ◽  
Vol 13 (3) ◽  
pp. 1189-1209
Author(s):  
Marzieh H. Derkani ◽  
Alberto Alberello ◽  
Filippo Nelli ◽  
Luke G. Bennetts ◽  
Katrin G. Hessner ◽  
...  

Abstract. The Southern Ocean has a profound impact on the Earth's climate system. Its strong winds, intense currents, and fierce waves are critical components of the air–sea interface and contribute to absorbing, storing, and releasing heat, moisture, gases, and momentum. Owing to its remoteness and harsh environment, this region is significantly undersampled, hampering the validation of prediction models and large-scale observations from satellite sensors. Here, an unprecedented data set of simultaneous observations of winds, surface currents, and ocean waves is presented, to address the scarcity of in situ observations in the region – https://doi.org/10.26179/5ed0a30aaf764 (Alberello et al., 2020c) and https://doi.org/10.26179/5e9d038c396f2 (Derkani et al., 2020). Records were acquired underway during the Antarctic Circumnavigation Expedition (ACE), which went around the Southern Ocean from December 2016 to March 2017 (Austral summer). Observations were obtained with the wave and surface current monitoring system WaMoS-II, which scanned the ocean surface around the vessel using marine radars. Measurements were assessed for quality control and compared against available satellite observations. The data set is the most extensive and comprehensive collection of observations of surface processes for the Southern Ocean and is intended to underpin improvements of wave prediction models around Antarctica and research of air–sea interaction processes, including gas exchange and dynamics of sea spray aerosol particles. The data set has further potentials to support theoretical and numerical research on lower atmosphere, air–sea interface, and upper-ocean processes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elena Schall ◽  
Karolin Thomisch ◽  
Olaf Boebel ◽  
Gabriele Gerlach ◽  
Sari Mangia Woods ◽  
...  

AbstractHumpback whale males are known to sing on their low-latitude breeding grounds, but it is well established that songs are also commonly produced ‘off-season’ on the feeding grounds or during migration. This opens exciting opportunities to investigate migratory aggregations, study humpback whale behavioral plasticity and potentially even assign individual singers to specific breeding grounds. In this study, we analyzed passive acoustic data from 13 recording positions and multiple years (2011–2018) within the Atlantic sector of the Southern Ocean (ASSO). Humpback whale song was detected at nine recording positions in five years. Most songs were recorded in May, austral fall, coinciding with the rapid increase in sea ice concentration at most recording positions. The spatio-temporal pattern in humpback whale singing activity on Southern Ocean feeding grounds is most likely shaped by local prey availability and humpback whale migratory strategies. Furthermore, the comparative analyses of song structures clearly show a differentiation of two song groups, of which one was solely recorded at the western edge of the ASSO and the other song group was recorded throughout the ASSO. This new finding suggests a common feeding ground occupation by multiple humpback whale populations in the ASSO, allowing for cultural and potentially even genetic exchange among populations.


2000 ◽  
Vol 47 (9) ◽  
pp. 1663-1686 ◽  
Author(s):  
E.A. Pakhomov ◽  
R. Perissinotto ◽  
C.D. McQuaid ◽  
P.W. Froneman

Sign in / Sign up

Export Citation Format

Share Document