scholarly journals Marine-dumped waste tyres cause the ghost fishing of hermit crabs

2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Atsushi Sogabe ◽  
Kiichi Takatsuji

Poorly managed waste tyres pose serious environmental and health risks, ranging from air pollution caused by fire, leaching of heavy metals and outbreaks of mosquitos, to destruction of vegetation and coral reefs. We report a previously unrecognized ecological risk to marine organisms from waste tyres. Over 1 year, we made monthly counts of hermit crabs ( n = 1278) invading and/or being trapped within six tyres anchored to the seabed at 8 m depth in Mutsu Bay, Japan. A complementary aquarium experiment in which hermit crabs were released into a tyre confirmed that they could not escape. We report marine-dumped waste tyres to ghost fish in a manner analogous to discarded fishing gear. Because hermit crabs play important roles in coastal food webs as both prey and scavengers, declines in their numbers as a consequence of this ghost fishing might affect coastal ecosystems.

2020 ◽  
Vol 35 (5) ◽  
pp. 516-526 ◽  
Author(s):  
Vinod Kumar ◽  
Anket Sharma ◽  
Shevita Pandita ◽  
Renu Bhardwaj ◽  
Ashwani Kumar Thukral ◽  
...  

Author(s):  
Romanus A. Obasi ◽  
Henry Y. Madukwe

Heavy metals on the soil around an abandoned battery site at Wofun, Ibadan, Southwestern, Nigeria were studied for their ecological and health risks. Ten soil samples collected from the soil around the abandoned battery sites were analyzed using Inductively Coupled Plasma –Mass spectrometry (ICP-MS). The data were evaluated using indices such as contamination factor, enrichment factor, geo-accumulation index and pollution index to determine the ecological and health risks posed by the heavy metals. The results showed an average concentration of Pb (7274.4), V (190.63), Cu (77.52), Zn (53.08) and Co (53) in a decreasing order. The enrichment factor revealed high enrichment for Co (12.30) at site one (S1), and extreme enrichment of Pb (61.12). Zn, Rb and Mo showed no enrichment in the soil. All the sites exhibited extremely high enrichment of Pb except at S10 where the enrichment of Pb was only severe. The results of Igeo indicated that all the sites were strongly to extremely polluted by Pb while S6 is moderately polluted by Co. The rest of the metals do not constitute any pollution threats. An evaluation of the ecological risk index (RI) revealed that the mean Er for Co (13.95), Cu (8.61), and Zn (0.56) indicate low ecological risk as they are less than 40 (Er <40).  Lead (Pb) with Er value of 1818.60 has a very high ecological risk and accounts for most of the ecological risks in the study area. Lead (Pb) being the most toxic and abundant of all the heavy metals analyzed in the study areas was used to evaluate the potential  non-carcinogenic health risk for both children and adults. The hazard index which is the sum of the hazard quotients for children is 26.64 suggesting that non-carcinogenic health risk may occur if there is any form of exposure to the soil. The hazard index for the adult (2.87) indicated a significant potential non-carcinogenic health risk in the study area.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Ying Huang ◽  
YongXia Li ◽  
Jian Yang ◽  
MinMin Xu ◽  
Bo Sun ◽  
...  

The concentrations of pollutants in soil samples collected in and around a dumpsite in Heze, Shandong, China, were investigated, and the potential ecological and health risks of these pollutants were assessed. Seventeen soil samples from five different locations were analysed for pollution characteristics, and the target pollutants included inorganic pollutants and heavy metals as well as volatile organic compounds/semivolatile organic compounds (VOCs/SVOCs). Results showed that the mean concentration level of each pollutant from the interior area was relatively higher than that from the boundary area of the dumpsite. Inorganic pollutants and heavy metals were detected in all of the soil samples. According to potential ecological risk assessment with environmental background values of Shandong as screening values, heavy metals in majority of the samples pose low ecological risk to the ecosystem except Hg. Hg poses a considerable or very high risk because of its high levels of accumulation. In consideration of future land use pattern, human health risks derived from environmental exposure to heavy metals were assessed. Carcinogenic risk and noncarcinogenic hazards for adults are acceptable, while noncarcinogenic hazards for children exceed the safety threshold. The health risks are primarily attributed to oral exposure to As and Cr.


2019 ◽  
Vol 11 (18) ◽  
pp. 4828 ◽  
Author(s):  
Na Wang ◽  
Jichang Han ◽  
Yang Wei ◽  
Gang Li ◽  
Yingying Sun

Xunyang is rich in various metal minerals and is one of the four major metal mining areas in Shaanxi province, China. To explore the effects of soil heavy metals and metalloid pollution on the environment and human health around the mining areas, four places—Donghecun (D), Gongguan (G), Qingtonggou (Q) and Nanshagou (N)—were selected as the sampling sites. Potential ecological risk (PER) and health risk assessment (HRA) models were used to analyze the environmental and health risks around the mining areas. The concentration of heavy metals (Cd, Cr, Pb, Zn, Ni, Cu, Hg) and metalloid (As) in cultivated land in the vicinity of Xunyang mining areas indicated that, except for Cu, the remaining elements detected exceeded the threshold values at some sites. The geo-accumulation index (IGeo) revealed that soils in G and Q could be identified as being extremely contaminated. PER indicated that there was significantly high risk at G and Q for Hg. In N, Pb recorded the highest E r i , which also demonstrates a considerable pre-existing risk. HRA indicated that the hazard index (HI) for both carcinogenic and non-carcinogenic risks was much higher among children than among adults, and the ingestion pathway contributed the greatest risk to human health, followed by the dermal pathway and inhalation. Because the HI values of the metals and metalloid in the study areas were all lower than 1, there was no significant non-carcinogenic risk. However, the carcinogenic risk for Cr is relatively higher, surpassing the tolerable values in G, Q, and N. This study analyzed the ecological risks and human health risks of heavy metals and metalloid in farmland soils near the sampling mining areas, and demonstrated the importance of environmental changes caused by land development in the mining industry.


2010 ◽  
Vol 9 (10) ◽  
pp. 1401-1405
Author(s):  
Mihaela Budianu ◽  
Brindusa Mihaela Robu ◽  
Matei Macoveanu

Author(s):  
Sangeetha Annam ◽  
Anshu Singla

Abstract: Soil is a major and important natural resource, which not only supports human life but also furnish commodities for ecological and economic growth. Ecological risk has posed a serious threat to the ecosystem by the degradation of soil. The high-stress level of heavy metals like chromium, copper, cadmium, etc. produce ecological risks which include: decrease in the fertility of the soil; reduction in crop yield & degradation of metabolism of living beings, and hence ecological health. The ecological risk associated, demands the assessment of heavy metal stress levels in soils. As the rate of stress level of heavy metals is exponentially increasing in recent times, it is apparent to assess or predict heavy metal contamination in soil. The assessment will help the concerned authorities to take corrective as well as preventive measures to enhance the ecological and hence economic growth. This study reviews the efficient assessment models to predict soil heavy metal contamination.


2019 ◽  
Vol 43 (1) ◽  
Author(s):  
Esmat Ahmed Abou El-Anwar

Abstract Background Aswan and Luxor Governorates are characterized by multifaceted activities such as cement, chemicals, fertilizers, detergents, nitrogen fertilizer factory at Aswan, the sugar and diary factory at Kom Ombo, and several other factories such as the sugar, pulp, paper, ferrosilicon, and phosphate factories at Edfu, urbanization and agriculture. In addition, there is a main sewage station which is used for irrigation of many crops. Assessing the pollution of soil and sediment with some heavy metals in these areas is the main aim of the current work. Results The average heavy metals content in the studied cultivated soils and Nile sediments are above the acceptable levels. Generally, Nile sediments and cultivated soils at Aswan and Luxor were unpolluted to moderately polluted with heavy metals. Pollution indices indicated that the studied Nile sediments were at considerably ecological risk from Cd (Er = 138.89) and Zn (Er = 140.52). In contrast, the cultivated soil was at very high ecological risk from Cd (Er = 295.24). Conclusions The current research revealed that the soil and sediments in the Upper Egypt are less polluted than Lower Egypt. Thus, the concentrations of toxic elements are increased from south to north direction in Egypt along the Nile River. The sources of the toxic metals may possibly be natural or anthropogenic in the studied area. The anthropogenic source is resulting from paper, pulp, ferrosilicon factories, and phosphate mining at Edfu. In addition, there are some polluting industries such as sand quarry, shale mining, and the nitrogen fertilizer factory at Aswan. On the other hand, the natural sources of toxic waste are the drains during the seasonal flash floods.


Author(s):  
Mohanad H. Al-Jaberi ◽  
Muqdad T. Sedkhan ◽  
Ghazi A. Hussain ◽  
Ammar A. Jasim

Sign in / Sign up

Export Citation Format

Share Document