scholarly journals Learning and motor inhibitory control in crows and domestic chickens

2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Claudia A. F. Wascher ◽  
Katie Allen ◽  
Georgine Szipl

Cognitive abilities allow animals to navigate through complex, fluctuating environments. In the present study, we tested the performance of a captive group of eight crows, Corvus corone and 10 domestic chickens, Gallus gallus domesticus , in the cylinder task, as a test of motor inhibitory control and reversal learning as a measure of learning ability and behavioural flexibility. Four crows and nine chickens completed the cylinder task, eight crows and six chickens completed the reversal learning experiment. Crows performed better in the cylinder task compared with chickens. In the reversal learning experiment, species did not significantly differ in the number of trials until the learning criterion was reached. The performance in the reversal learning experiment did not correlate with performance in the cylinder task in chickens. Our results suggest crows to possess better motor inhibitory control compared with chickens. By contrast, learning performance in a reversal learning task did not differ between the species, indicating similar levels of behavioural flexibility. Interestingly, we describe notable individual differences in performance. We stress the importance not only to compare cognitive performance between species but also between individuals of the same species when investigating the evolution of cognitive skills.

2020 ◽  
Author(s):  
Claudia A.F. Wascher ◽  
Katie Allen ◽  
Georgine Szipl

AbstractCognitive abilities allow animals to navigate through complex, fluctuating environments. For example, behavioural flexibility, which is the ability of an animal to alter their behaviour in response to a novel stimulus or to modify responses to as familiar stimulus or behavioural inhibition, defined as the ability to control a response in order to choose a conflicting course of action. Behavioural flexibility and inhibitory control are expected to vary between and within species based on socio-ecological factors. In the present study we compared performance of a captive group of eight crows, Corvus corone, and ten domestic fowl, Gallus gallus domesticus, in two cognitive tasks, the cylinder task as a test of motor inhibitory control, and reversal learning as a measure of learning ability and behavioural flexibility. Four crows and nine fowl completed the cylinder task, eight crows completed the reversal learning experiment and nine fowl were tested in the acquisition phase, however three fowl did not complete the reversal phase of the experiment due to time constraints. Crows performed significantly better in the cylinder task compared to domestic fowl. In the reversal learning experiment, species did not significantly differ in the number of trials until learning criterion was reached. In crows, individuals who needed less trials to reach learning criterion in the acquisition phase also needed less trials to reach the criterion in the reversal phase. This relationship was lacking in domestic fowl. Performance in the learning task did not correlate with performance in the cylinder task in domestic fowl. Our results show crows to possess significantly better motor-inhibitory control compared to domestic fowl, which could be indicative of this specific aspect of executive functioning to be lacking in domestic fowl. In contrast learning performance in a reversal learning task did not differ between crows and domestic fowl, indicating similar levels of behavioural flexibility in both species.


2021 ◽  
Author(s):  
Christian Nawroth ◽  
Katrina ◽  
Nina Keil ◽  
Jan Langbein

Artificial selection by humans has likely affected animal’s ability to learn novel contingencies and their ability to adapt to changing environments. In addition, the selection for specific traits in domestic animals might have an additional impact on subject’s behavioural flexibility, but also their general learning performance, due to a re-allocation of resources towards parameters of productivity. To test whether animals bred for high productivity would experience a shift towards lower learning performance, we compared the performance of dwarf goats (not selected for production, 15 subjects) and dairy goats (selected for high milk yield, 18 subjects) in a visual discrimination learning and reversal learning task. To increase the heterogeneity of our test sample, data was collected by two experimenters at two research stations following a similar protocol. We did not find differences between selection lines in the initial discrimination learning task, but in the subsequent reversal learning task - dairy goats were slower to reach the learning criterion compared to dwarf goats (9.18 sessions versus 7.74 sessions, respectively). Our results indicate that the selection for milk production might have affected behavioural flexibility in goats. These breed-specific differences in adapting to changing environmental stimuli might have an impact on welfare-relevant parameters, e.g. when subjects are transferred or re-housed/re-grouped.


Behaviour ◽  
2021 ◽  
pp. 1-31
Author(s):  
Gilles De Meester ◽  
Alkyoni Sfendouraki-Basakarou ◽  
Panayiotis Pafilis ◽  
Raoul Van Damme

Abstract Harsh and variable environments have been hypothesized to both drive and constrain the evolution towards higher cognitive abilities and behavioural flexibility. In this study, we compared the cognitive abilities of island and mainland Aegean wall lizards (Podarcis erhardii), which were expected to live in respectively a more variable and a more stable habitat. We used four proxies of behavioural flexibility: a neophobia assay, a problem-solving test and a spatial + reversal learning task. Surprisingly, the two populations did not differ in neophobia or problem-solving. Insular lizards, however, outperformed mainland conspecifics in an initial spatial learning task, but were less successful during the subsequent reversal learning. Our results thus seem to indicate that the effect of environmental variability on cognition is complex, as it may favour some, but not all aspects of behavioural flexibility.


Author(s):  
Felicity Muth ◽  
Amber D Tripodi ◽  
Rene Bonilla ◽  
James P Strange ◽  
Anne S Leonard

Abstract Females and males often face different sources of selection, resulting in dimorphism in morphological, physiological, and even cognitive traits. Sex differences are often studied in respect to spatial cognition, yet the different ecological roles of males and females might shape cognition in multiple ways. For example, in dietary generalist bumblebees (Bombus), the ability to learn associations is critical to female workers, who face informationally rich foraging scenarios as they collect nectar and pollen from thousands of flowers over a period of weeks to months to feed the colony. While male bumblebees likely need to learn associations as well, they only forage for themselves while searching for potential mates. It is thus less clear whether foraging males would benefit from the same associative learning performance as foraging females. In this system, as in others, cognitive performance is typically studied in lab-reared animals under captive conditions, which may not be representative of patterns in the wild. In the first test of sex and species differences in cognition using wild bumblebees, we compared the performance of Bombus vancouverensis nearcticus (formerly bifarius) and Bombus vosnesenskii of both sexes on an associative learning task at Sierra Nevada (CA) field sites. Across both species, we found that males and females did not differ in their ability to learn, although males were slower to respond to the sucrose reward. These results offer the first evidence from natural populations that male bumblebees may be equally as able to learn associations as females, supporting findings from captive colonies of commercial bees. The observed interspecific variation in learning ability opens the door to using the Bombus system to test hypotheses about comparative cognition.


2018 ◽  
Vol 373 (1756) ◽  
pp. 20170285 ◽  
Author(s):  
Enrico Sorato ◽  
Josefina Zidar ◽  
Laura Garnham ◽  
Alastair Wilson ◽  
Hanne Løvlie

Natural selection can act on between-individual variation in cognitive abilities, yet evolutionary responses depend on the presence of underlying genetic variation. It is, therefore, crucial to determine the relative extent of genetic versus environmental control of these among-individual differences in cognitive traits to understand their causes and evolutionary potential. We investigated heritability of associative learning performance and of a cognitive judgement bias (optimism), as well as their covariation, in a captive pedigree-bred population of red junglefowl ( Gallus gallus , n > 300 chicks over 5 years). We analysed performance in discriminative and reversal learning (two facets of associative learning), and cognitive judgement bias, by conducting animal models to disentangle genetic from environmental contributions. We demonstrate moderate heritability for reversal learning, and weak to no heritability for optimism and discriminative learning, respectively. The two facets of associative learning were weakly negatively correlated, consistent with hypothesized trade-offs underpinning individual cognitive styles. Reversal, but not discriminative learning performance, was associated with judgement bias; less optimistic individuals reversed a previously learnt association faster. Together these results indicate that genetic and environmental contributions differ among traits. While modular models of cognitive abilities predict a lack of common genetic control for different cognitive traits, further investigation is required to fully ascertain the degree of covariation between a broader range of cognitive traits and the extent of any shared genetic control. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.


2011 ◽  
Vol 366 (1567) ◽  
pp. 1008-1016 ◽  
Author(s):  
Carel P. van Schaik ◽  
Judith M. Burkart

If social learning is more efficient than independent individual exploration, animals should learn vital cultural skills exclusively, and routine skills faster, through social learning, provided they actually use social learning preferentially. Animals with opportunities for social learning indeed do so. Moreover, more frequent opportunities for social learning should boost an individual's repertoire of learned skills. This prediction is confirmed by comparisons among wild great ape populations and by social deprivation and enculturation experiments. These findings shaped the cultural intelligence hypothesis, which complements the traditional benefit hypotheses for the evolution of intelligence by specifying the conditions in which these benefits can be reaped. The evolutionary version of the hypothesis argues that species with frequent opportunities for social learning should more readily respond to selection for a greater number of learned skills. Because improved social learning also improves asocial learning, the hypothesis predicts a positive interspecific correlation between social-learning performance and individual learning ability. Variation among primates supports this prediction. The hypothesis also predicts that more heavily cultural species should be more intelligent. Preliminary tests involving birds and mammals support this prediction too. The cultural intelligence hypothesis can also account for the unusual cognitive abilities of humans, as well as our unique mechanisms of skill transfer.


2021 ◽  
Vol 288 (1946) ◽  
pp. 20203161
Author(s):  
Alexandra K. Schnell ◽  
Markus Boeckle ◽  
Micaela Rivera ◽  
Nicola S. Clayton ◽  
Roger T. Hanlon

The ability to exert self-control varies within and across taxa. Some species can exert self-control for several seconds whereas others, such as large-brained vertebrates, can tolerate delays of up to several minutes. Advanced self-control has been linked to better performance in cognitive tasks and has been hypothesized to evolve in response to specific socio-ecological pressures. These pressures are difficult to uncouple because previously studied species face similar socio-ecological challenges. Here, we investigate self-control and learning performance in cuttlefish, an invertebrate that is thought to have evolved under partially different pressures to previously studied vertebrates. To test self-control, cuttlefish were presented with a delay maintenance task, which measures an individual's ability to forgo immediate gratification and sustain a delay for a better but delayed reward. Cuttlefish maintained delay durations for up to 50–130 s. To test learning performance, we used a reversal-learning task, whereby cuttlefish were required to learn to associate the reward with one of two stimuli and then subsequently learn to associate the reward with the alternative stimulus. Cuttlefish that delayed gratification for longer had better learning performance. Our results demonstrate that cuttlefish can tolerate delays to obtain food of higher quality comparable to that of some large-brained vertebrates.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alexander Bublitz ◽  
Guido Dehnhardt ◽  
Frederike D. Hanke

Reversal learning requires an animal to learn to discriminate between two stimuli but reverse its responses to these stimuli every time it has reached a learning criterion. Thus, different from pure discrimination experiments, reversal learning experiments require the animal to respond to stimuli flexibly, and the reversal learning performance can be taken as an illustration of the animal's cognitive abilities. We herein describe a reversal learning experiment involving a simple spatial discrimination task, choosing the right or left side, with octopus. When trained with positive reinforcement alone, most octopuses did not even learn the original task. The learning behavior changed drastically when incorrect choices were indicated by a visual signal: the octopuses learned the task within a few sessions and completed several reversals thereby decreasing the number of errors needed to complete a reversal successively. A group of octopus trained with the incorrect-choice signal directly acquired the task quickly and reduced their performances over reversals. Our results indicate that octopuses are able to perform successfully in a reversal experiment based on a spatial discrimination showing progressive improvement, however, without reaching the ultimate performance. Thus, depending on the experimental context, octopus can show behavioral flexibility in a reversal learning task, which goes beyond mere discrimination learning.


2018 ◽  
Vol 5 (2) ◽  
pp. 171475 ◽  
Author(s):  
Ellis J. G. Langley ◽  
Jayden O. van Horik ◽  
Mark A. Whiteside ◽  
Joah R. Madden

Dominant individuals differ from subordinates in their performances on cognitive tasks across a suite of taxa. Previous studies often only consider dyadic relationships, rather than the more ecologically relevant social hierarchies or networks, hence failing to account for how dyadic relationships may be adjusted within larger social groups. We used a novel statistical method: randomized Elo-ratings, to infer the social hierarchy of 18 male pheasants, Phasianus colchicus , while in a captive, mixed-sex group with a linear hierarchy. We assayed individual learning performance of these males on a binary spatial discrimination task to investigate whether inter-individual variation in performance is associated with group social rank. Task performance improved with increasing trial number and was positively related to social rank, with higher ranking males showing greater levels of success. Motivation to participate in the task was not related to social rank or task performance, thus indicating that these rank-related differences are not a consequence of differences in motivation to complete the task. Our results provide important information about how variation in cognitive performance relates to an individual's social rank within a group. Whether the social environment causes differences in learning performance or instead, inherent differences in learning ability predetermine rank remains to be tested.


Animals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 58 ◽  
Author(s):  
Anna Scandurra ◽  
Alessandra Alterisio ◽  
Anna Di Cosmo ◽  
Antonio D’Ambrosio ◽  
Biagio D’Aniello

Recent studies have underlined the effect of ovariectomy on the spatial cognition of female dogs, with ovariectomized dogs showing a clear preference for an egocentric rather than an allocentric navigation strategy whereas intact females did not show preferences. Intact females had better performances than gonadectomized females in solving a learning task in a maze. Ovariectomy also affects socio-cognitive abilities, reducing the dog’s level of attention on the owner. We tested dogs (Canis lupus familiaris) in the object choice task paradigm to assess whether an ovariectomy could impair females’ ability to follow human signals. Forty pet dogs (18 intact females (IF) and 22 gonadectomized females (GF)) were tested in the object choice task paradigm using the human proximal pointing gesture. For the analysis, the frequency of correct, wrong and no-choices was collected; moreover, the latency of the correct choices was also considered. The IF group followed the pointing gestures more often than the GF group and with a lower latency, whereas a significantly higher no-choice frequency was recorded for the GF group. These results show a detrimental effect of ovariectomy on dogs’ socio-cognitive skills related to the responsiveness to human pointing gestures.


Sign in / Sign up

Export Citation Format

Share Document