The distribution of temperature along electrically heated tubes and coils I. Theoretical

The distribution of temperature along a filament electrically heated in vacuo has been studied in detail in previous papers, both theoretically and experimentally. The investigations are extended in the present paper to the case of a thin-walled tube. The major new factor that appears here is the radiational transfer of energy in the core of the tube, and if one can evaluate the rate of gain in energy by a given annular ring on this account one can readily formulate the differential equation governing the distribution of temperature along the tube. Taking ε to be the emissivity, and hence also the absorptivity , of the surface, and taking the fraction (1 – ε) of the radiation incident on the surface that is not absorbed by it to be specularly reflected, we have calculated the radiational gain by the annular ring per second; the expression consists of two terms, proportional to (dT/dx) 2 and to d 2 T/ d x 2 respectively, and their coefficients point to a temperature-dependent thermal conductivity of the core equal to 16/3σDT 3 (2─ε)/ε. It is as though the conduction is due to the thermal diffusion of the photons, and they had a mean free path equal to the diameter D of the tube, enhanced by a factor (2 – ε )/ε as a result of the specular reflexions, in the same manner in which the ‘coefficient of slip' of the molecules of a rarefied gas in its passage through a narrow tube is enhanced by the specular reflexions of the molecules from the walls of the tube. The expression for the conductivity of the core bears a close analogy to the corresponding expression for other transport phenomena in which the mean free path of the diffusing particle is limited by the dimensions of the medium or of the enclosure, e. g. the thermal conductivity of a hot gas in a narrow tube due to the diffusion of the photons emitted by the molecules, or the thermal conductivity of a dielectric cylinder a t low temperatures due to the diffusion of thermal phonons. Though the differential equation determining the temperature distribution along a tube is more complicated than that for a filament, a practically general solution can be obtained; it is found to be similar to that for the filament, except that the natural length is now considerably greater, and the longitudinal variation of the temperature considerably flatter, than in the filament. The case of a closely wound coil is very similar to that of the tube, except that the conductivity through the material of the walls is now through the wire and hence much smaller than in the tube.

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1982
Author(s):  
Paul Desmarchelier ◽  
Alice Carré ◽  
Konstantinos Termentzidis ◽  
Anne Tanguy

In this article, the effect on the vibrational and thermal properties of gradually interconnected nanoinclusions embedded in an amorphous silicon matrix is studied using molecular dynamics simulations. The nanoinclusion arrangement ranges from an aligned sphere array to an interconnected mesh of nanowires. Wave-packet simulations scanning different polarizations and frequencies reveal that the interconnection of the nanoinclusions at constant volume fraction induces a strong increase of the mean free path of high frequency phonons, but does not affect the energy diffusivity. The mean free path and energy diffusivity are then used to estimate the thermal conductivity, showing an enhancement of the effective thermal conductivity due to the existence of crystalline structural interconnections. This enhancement is dominated by the ballistic transport of phonons. Equilibrium molecular dynamics simulations confirm the tendency, although less markedly. This leads to the observation that coherent energy propagation with a moderate increase of the thermal conductivity is possible. These findings could be useful for energy harvesting applications, thermal management or for mechanical information processing.


A series of experiments has been performed to study the steady flow of heat in liquid helium in tubes of diameter 0.05 to 1.0 cm at temperatures between 0.25 and 0.7 °K. The results are interpreted in terms of the flow of a gas of phonons, in which the mean free path λ varies with temperature, and may be either greater or less than the diameter of the tube d . When λ ≫ d the flow is limited by the scattering of the phonons at the walls, and the effect of the surface has been studied, but when λ ≪ d viscous flow is set up in which the measured thermal conductivity is increased above that for wall scattering. This behaviour is very similar to that observed in the flow of gases at low pressures, and by applying kinetic theory to the problem it can be shown that the mean free path of the phonons characterizing viscosity can be expressed by the empirical relation λ = 3.8 x 10 -3 T -4.3 cm. This result is inconsistent with the temperature dependence of λ as T -9 predicted theoretically by Landau & Khalatnikov (1949).


Author(s):  
Weilin Yang ◽  
Hongxia Li ◽  
TieJun Zhang ◽  
Ibrahim M. Elfadel

Rarefied gas flow plays an important role in the design and performance analysis of micro-electro-mechanical systems (MEMS) under high-vacuum conditions. The rarefaction can be evaluated by the Knudsen number (Kn), which is the ratio of the molecular mean free path length and the characteristic length. In micro systems, the rarefied gas flow usually stays in the slip- and transition-flow regions (10−3 < Kn < 10), and may even go into the free molecular flow region (Kn > 10). As a result, conventional design tools based on continuum Navier-Stokes equation solvers are not applicable to analyzing rarefaction phenomena in MEMS under vacuum conditions. In this paper, we investigate the rarefied gas flow by using the lattice Boltzmann method (LBM), which is suitable for mesoscopic fluid simulation. The gas pressure determines the mean free path length and Kn, which further influences the relaxation time in the collision procedure of LBM. Here, we focus on the problem of squeezed film damping caused by an oscillating rigid object in a cavity. We propose an improved LBM with an immersed boundary approach, where an adjustable force term is used to quantify the interaction between the moving object and adjacent fluid, and further determines the slip velocity. With the proposed approach, the rarefied gas flow in MEMS with squeezed film damping is characterized. Different factors that affect the damping coefficient, such as pressure of gas and frequency of oscillation, are investigated in our simulation studies.


2019 ◽  
Vol 21 (5) ◽  
pp. 2453-2462 ◽  
Author(s):  
Daewoo Suh ◽  
Sanghoon Lee ◽  
Chenchen Xu ◽  
Agha Aamir Jan ◽  
Seunghyun Baik

A percolation network of silver nanoflowers dramatically increased the thermal conductivity (42.4 W m−1 K−1) in soft polyurethane-matrix thermal interface materials.


1987 ◽  
Vol 99 ◽  
Author(s):  
J. E. Graebner ◽  
L. F. Schneemeyer ◽  
R. J. Cava ◽  
J. V. Waszczak ◽  
E. A. Rietman

ABSTRACTThe thermal conductivity k of micro-twinned single crystals of YBa2Cu3O7 and HoBa2Cu3O7 and a sintered sample of YBa2Cu3O7 has been measured for temperatures 0.03<T<5K. For the single crystals, k is small and varies as T1.8-1.9 This behavior resembles k for glassy insulators except for the lack of a plateau above IK. It is concluded that the thermal carriers are phonons with their mean free path limited by resonant scattering from tunneling entities, as in glasses. Suggestions for the location of tunneling systems are given. For the sinter, k is still smaller but does not follow a power law T-dependence. It is similar to other sintered ceramics with the same particle size, where the phonon mean free path is dominated by Rayleigh scattering from the particles. This strong scattering from the microstructure presumably masks the scattering from TS within each particle.


Author(s):  
Ravi Prasher

Thermal conductivity of packed bed of nanoparticles is calculated in this paper. Results show that effective thermal conductivity of nanoparticle bed can be very low. Thermal conductivity of the nanoparticle bed can be smaller than the thermal conductivity of air. Thermal conductivity depends on pressure, surface energy of the nanoparticle, and phonon mean free path.


2012 ◽  
Vol 111 (5) ◽  
pp. 054301 ◽  
Author(s):  
Vijay K. Arora ◽  
Mastura Shafinaz Zainal Abidin ◽  
Michael L. P. Tan ◽  
Munawar A. Riyadi

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Qiaoli Zhou ◽  
Fanyan Meng ◽  
Zhuhong Liu ◽  
Sanqiang Shi

The thermal conductivity of various carbon nanotubes with defects or intramolecular junctions was studied using nonequilibrium molecular dynamics approach. The results show that the thermal conductivity of both armchair and zigzag carbon nanotubes increased with the decrease of the radius of the tube. The thermal conductivity of armchair tube is higher than that of zigzag tube when the radii of the two tubes are kept almost same. Discontinuities appear on the temperature profile along the tube axial at the region of IMJ, resulting in the large temperature gradient and thus lower thermal conductivity of(n,n)/(m,0)tube with one IMJ and(m,0)/(n,n)/(m,0)tube with two IMJs. For the(m,0)/(n,n)/(m,0)tube with two IMJs, phonon mean free path of the middle(n,n)tube is much smaller than that of the isolate(n,n)tube.


Sign in / Sign up

Export Citation Format

Share Document