Slow oscillations of fluid in a rotating cavity in the presence of a toroidal magnetic field

Hide (1966) has suggested that the slow westward drift of the non-dipole components of the Earth’s magnetic field may be caused by slow free oscillations of the fluid part of the Earth’s core in the presence of a dominant toriodal magnetic field. An attempt is made here to analyse this suggestion in detail. First, slow (or second class oscillations in a thin shell are examined in the presence of a uniform toroidal field and Hide’s theory is shown to be qualitatively correct but to underestimate the actual periods of oscillation. In these oscillations the drift is to the east and Hide argued that for a thick shell there will be a change of sign in the drift in conformity with observation. Accordingly the present theory is extended to thick shells, but it is shown that, for those oscillations in (1-1) correspondence with the ones already found for a thin shell, no such change of sign occurs. Since such oscillations are as likely to be manifested on the exterior field as any other it is concluded that the analysis presented here raises a serious objection to Hide’s proposal. It is noted, however, that for some higher modes of oscillation a drift to the west is almost certain.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Joseph Nkongho Anyi ◽  
Robert Nzengwa ◽  
Jean Chills Amba ◽  
Claude Valery Abbe Ngayihi

We have developed a curved finite element for a cylindrical thick shell based on the thick shell equations established in 1999 by Nzengwa and Tagne (N-T). The displacement field of the shell is interpolated from nodal displacements only and strains assumption. Numerical results on a cylindrical thin shell are compared with those of other well-known benchmarks with satisfaction. Convergence is rapidly obtained with very few elements. A scaling was processed on the cylindrical thin shell by increasing the ratioχ=h/2R(half the thickness over the smallest radius in absolute value) and comparing results with those obtained with the classical Kirchhoff-Love thin shell theory; it appears that results diverge at2χ=1/10=0.316because of the significant energy contribution of the change of the third fundamental form found in N-T model. This limit value of the thickness ratio which characterizes the limit between thin and thick cylindrical shells differs from the ratio 0.4 proposed by Leissa and 0.5 proposed by Narita and Leissa.


1967 ◽  
Vol 20 (1) ◽  
pp. 101 ◽  
Author(s):  
KJW Lynn ◽  
J Crouchley

Results of a study at Brisbane of individual night-time sferics of known origin are described. A propagation attenuation minimum was observed in the 3-6 kHz range. The geographic distribution of sferic types was also examined. Apparent propagation asynunetries were observed, since sferics were detected at greater ranges to the west than to the east at 10 kHz, whilst the number of tweek-sferics arising from the east was about four times that arising from the west. Comparison with European studies suggest that these asymmetries are general. These results are then " interpreted in terms of an ionospheric reflection cgefficient which is a function of the effective angle of incidence of the wave on the ionosphere and of orientation with respect to the Earth's magnetic field within the ionosphere.


1971 ◽  
Vol 43 ◽  
pp. 413-416 ◽  
Author(s):  
Shinzo Énomé ◽  
Haruo Tanaka

An expansion of the source of a great solar microwave burst was observed a little beyond the west limb on March 30, 1969. This expansion is interpreted in terms of diffusion of energetic electrons in a turbulent magnetic field in the flare region. The height of the source is estimated to have been 104 km.


The westward drift of the non-dipole part of the earth’s magnetic field and of its secular variation is investigated for the period 1907-45 and the uncertainty of the results discussed. It is found that a real drift exists having an angular velocity which is independent of latitude. For the non-dipole field the rate of drift is 0.18 ± 0-015°/year, that for the secular variation is 0.32 ±0-067°/year. The results are confirmed by a study of harmonic analyses made between 1829 and 1945. The drift is explained as a consequence of the dynamo theory of the origin of the earth’s field. This theory required the outer part of the core to rotate less rapidly than the inner part. As a result of electromagnetic forces the solid mantle of the earth is coupled to the core as a whole, and the outer part of the core therefore travels westward relative to the mantle, carrying the minor features of the field with it.


1969 ◽  
Vol 1 (6) ◽  
pp. 274-276 ◽  
Author(s):  
L. J. Gleeson ◽  
M. P. C. Legg ◽  
K. C. Westfold

This paper is a preliminary account of the calculation of the circularly polarized synchrotron radiation received from a distribution of electricallycharged particles confined to a thin shell in the magnetic field of a dipole. Calculations of the total radiation and the degree of linear polarization have previously been carried out, and these calculations are duplicated in part.


1993 ◽  
Vol 29 (6) ◽  
pp. 2434-2436 ◽  
Author(s):  
F. Rioux-Damidau ◽  
B. Bandelier

2020 ◽  
Vol 117 (11) ◽  
pp. 5638-5643 ◽  
Author(s):  
Peihao Huang ◽  
Hanyu Liu ◽  
Jian Lv ◽  
Quan Li ◽  
Chunhong Long ◽  
...  

The anomalous nondipolar and nonaxisymmetric magnetic fields of Uranus and Neptune have long challenged conventional views of planetary dynamos. A thin-shell dynamo conjecture captures the observed phenomena but leaves unexplained the fundamental material basis and underlying mechanism. Here we report extensive quantum-mechanical calculations of polymorphism in the hydrogen–oxygen system at the pressures and temperatures of the deep interiors of these ice giant planets (to >600 GPa and 7,000 K). The results reveal the surprising stability of solid and fluid trihydrogen oxide (H3O) at these extreme conditions. Fluid H3O is metallic and calculated to be stable near the cores of Uranus and Neptune. As a convecting fluid, the material could give rise to the magnetic field consistent with the thin-shell dynamo model proposed for these planets. H3O could also be a major component in both solid and superionic forms in other (e.g., nonconvecting) layers. The results thus provide a materials basis for understanding the enigmatic magnetic-field anomalies and other aspects of the interiors of Uranus and Neptune. These findings have direct implications for the internal structure, composition, and dynamos of related exoplanets.


Sign in / Sign up

Export Citation Format

Share Document