scholarly journals Approximation of Linear Elastic Shells by Curved Triangular Finite Elements Based on Elastic Thick Shells Theory

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Joseph Nkongho Anyi ◽  
Robert Nzengwa ◽  
Jean Chills Amba ◽  
Claude Valery Abbe Ngayihi

We have developed a curved finite element for a cylindrical thick shell based on the thick shell equations established in 1999 by Nzengwa and Tagne (N-T). The displacement field of the shell is interpolated from nodal displacements only and strains assumption. Numerical results on a cylindrical thin shell are compared with those of other well-known benchmarks with satisfaction. Convergence is rapidly obtained with very few elements. A scaling was processed on the cylindrical thin shell by increasing the ratioχ=h/2R(half the thickness over the smallest radius in absolute value) and comparing results with those obtained with the classical Kirchhoff-Love thin shell theory; it appears that results diverge at2χ=1/10=0.316because of the significant energy contribution of the change of the third fundamental form found in N-T model. This limit value of the thickness ratio which characterizes the limit between thin and thick cylindrical shells differs from the ratio 0.4 proposed by Leissa and 0.5 proposed by Narita and Leissa.

1997 ◽  
Vol 50 (8) ◽  
pp. 431-444 ◽  
Author(s):  
K. M. Liew ◽  
C. W. Lim ◽  
S. Kitipornchai

This review article documents recent developments in the free vibration analysis of thin, moderately thick, and thick shallow shells. An introductory review of the studies in Kirchhoff-Love classical thin shell theory is given. The development of studies in moderately thick shells incorporating the effects of transverse shear deformation and rotary inertia is detailed. This review article mainly focuses on research advances in vibration studies since the 1970s using the classical Kirchhoff-Love, first-order, and higher-order theories. The validity and range of applicability of these theories are examined. There are 163 references listed at the end of the article.


Hide (1966) has suggested that the slow westward drift of the non-dipole components of the Earth’s magnetic field may be caused by slow free oscillations of the fluid part of the Earth’s core in the presence of a dominant toriodal magnetic field. An attempt is made here to analyse this suggestion in detail. First, slow (or second class oscillations in a thin shell are examined in the presence of a uniform toroidal field and Hide’s theory is shown to be qualitatively correct but to underestimate the actual periods of oscillation. In these oscillations the drift is to the east and Hide argued that for a thick shell there will be a change of sign in the drift in conformity with observation. Accordingly the present theory is extended to thick shells, but it is shown that, for those oscillations in (1-1) correspondence with the ones already found for a thin shell, no such change of sign occurs. Since such oscillations are as likely to be manifested on the exterior field as any other it is concluded that the analysis presented here raises a serious objection to Hide’s proposal. It is noted, however, that for some higher modes of oscillation a drift to the west is almost certain.


2019 ◽  
Vol 24 (3) ◽  
pp. 451-457
Author(s):  
Yeong-Bin Yang ◽  
Jae-Hoon Kang

Natural frequencies and mode shapes are obtained for a sinusoidal-shaped shell of revolution by using the Ritz method from a three-dimensional (3-D) analysis instead of a mathematically two-dimensional (2-D) thin shell theory or high order thick shell theory. The present analysis uses circular cylindrical coordinates instead of 3-D shell coordinates, which have been used in traditional shell analyses. Convergence studies can analyze the first five frequencies to four-digit exactitude. Results are given for a variety of shallow and deep sinusoidal-shaped shells with different boundary conditions. The sinusoidal-shaped shells are very similar to paraboloidal shells in shape. The frequencies of the sinusoidal-shaped shells from the present 3-D method are compared with those from 2-D thin shell theories for paraboloidal shells. The present 3-D method is applicable to very thick as well as thin shells.


1970 ◽  
Vol 5 (3) ◽  
pp. 200-206 ◽  
Author(s):  
S Ahmad ◽  
R G Anderson ◽  
O C Zienkiewicz

The application of a new thick shell element is described with reference to vibration problems. The element is derived from the general isoparametric solid and therefore allows shear deformations to be included. It can take up highly distorted shapes and is useful in such studies as vibration of turbine blades for which it is superior to elements based on thin-shell theory. This element can also be used for thin shells with caution, excessive length/thickness ratios being avoided.


2019 ◽  
Vol 24 (2) ◽  
pp. 451-457
Author(s):  
Yeong-Bin Yang ◽  
Jae-Hoon Kang

Natural frequencies and mode shapes are obtained for a sinusoidal-shaped shell of revolution by using the Ritz method from a three-dimensional (3-D) analysis instead of a mathematically two-dimensional (2-D) thin shell theory or high order thick shell theory. The present analysis uses circular cylindrical coordinates instead of 3-D shell coordinates, which have been used in traditional shell analyses. Convergence studies can analyze the first five frequencies to four-digit exactitude. Results are given for a variety of shallow and deep sinusoidal-shaped shells with different boundary conditions. The sinusoidal-shaped shells are very similar to paraboloidal shells in shape. The frequencies of the sinusoidal-shaped shells from the present 3-D method are compared with those from 2-D thin shell theories for paraboloidal shells. The present 3-D method is applicable to very thick as well as thin shells.


Author(s):  
Mitra Esmailzadeh ◽  
Aouni A. Lakis

A method is presented to predict the root mean square displacement response of an open curved thin shell structure subjected to a turbulent boundary-layer-induced random pressure field. The basic formulation of the dynamic problem is an efficient approach combining classic thin shell theory and the finite element method. The displacement functions are derived from Sanders’ thin shell theory. A numerical approach is proposed to obtain the total root mean square displacements of the structure in terms of the cross-spectral density of random pressure fields. The cross-spectral density of pressure fluctuations in the turbulent pressure field is described using the Corcos formulation. Exact integrations over surface and frequency lead to an expression for the total root mean square displacement response in terms of the characteristics of the structure and flow. An in-house program based on the presented method was developed. The total root mean square displacements of a curved thin blade subjected to turbulent boundary layers were calculated and illustrated as a function of free stream velocity and damping ratio. A numerical implementation for the vibration of a cylinder excited by fully developed turbulent boundary layer flow was presented. The results compared favorably with those obtained using software developed by Lakis et al.


1992 ◽  
Vol 27 (3) ◽  
pp. 145-149 ◽  
Author(s):  
F J M Q De Melo ◽  
M A P Vaz

This paper presents a simple solution for the flexibility calculation of curved profiles having a rectangular thin-walled cross-section. Some assumptions related to geometric details about the shape of the deformed structure are included in the present analysis, aiming at an economic and accurate solution. Results concerning the distortion of the transverse section are compared with the corresponding data from the solution with a thin shell finite element analysis. A flexibility factor for the structure analysed here is presented as a graphical result.


Author(s):  
Albert Ku ◽  
Jieyan Chen ◽  
Bernard Cyprian

Abstract This paper consists of two parts. Part one presents a thin-shell analytical solution for calculating the conical transition junction loads. Design equations as contained in the current offshore standards are based on Boardman’s 1940s papers with beam-column type of solutions. Recently, Lotsberg presented a solution based on shell theory, in which both the tubular and the cone were treated with cylindrical shell equations. The new solution as presented in this paper is based on both cylindrical and conical shell theories. Accuracies of these various derivations will be compared and checked against FEM simulations. Part 2 of this paper is concerned with the ultimate capacity equations of conical transitions. This is motivated by the authors’ desire to unify the apparent differences among the API 2A, ISO 19902 and NORSOK design standards. It will be shown that the NORSOK provisions are equivalent to the Tresca yield criterion as derived from shell plasticity theory. API 2A provisions are demonstrated to piecewise-linearly approximate this Tresca yield surface with reasonable consistency. The 2007 edition of ISO 19902 will be shown to be too conservative when compared to these other two design standards.


2011 ◽  
Vol 20 (05) ◽  
pp. 661-674
Author(s):  
REINALDO J. GLEISER ◽  
MARCOS A. RAMIREZ

The Einstein–Vlasov equations govern the dynamics of systems of self-gravitating collisionless particles in the framework of general relativity. Here we review some recent results obtained by restricting to spherically symmetric systems and imposing the simplifying restrictions that the conserved angular momentum of the particles can take values only on a discrete, finite set. The first set of results is restricted to the existence of thin shells, their dynamics and stability. A second set is concerned with the existence of thick shells satisfying the same restrictions and the conditions under which they admit, in general, a thin shell limit. In a related result it is shown that the so called Einstein shells have a unique thin shell limit where the particle's angular momentum has a continuous distribution.


Sign in / Sign up

Export Citation Format

Share Document