The occurrence of chemical reactions in supersonic expansions of a gas into a vacuum and its relation to mass spectrometric sampling

Chemical reactions in gas phase systems such as flames are often studied by pumping a small sample of the gas through an orifice, after which the sample expands down a conical duct into one or more vacuum chambers, where finally it is analysed mass spectrometrically. One purpose of the expansion is to reduce suddenly the temperature and pressure of the gas to prevent chemical change in it. The extent to which chemical reactions in fact proceed during such an expansion is computed here using, as an example, the hydration of H 3 O + (the most commonly occurring ion in flames) in H 3 O + + H 2 O + M ⇌H 5 O 2 + + M. (I) Here M represents any molecule acting as a chaperon. For this purpose it is necessary to calculate the temperature, pressure and density of the gas in a conical expansion duct. This has been done in two ways, namely, with a simple one-dimensional model and also with a more realistic two-dimensional treatment employing the method of characteristics. This information on the flow field has been used together with thermodynamic and kinetic data on reaction (I) to compute the extent to which H 3 O + hydrates everywhere in the expansion and also the final levels of hydration attained when (I) finally freezes. Considerable hydration is predicted with final compositions corresponding to conditions roughly three or four orifice diameters inside the duct. Differences between the results of the one- and two-dimensional models are obtained, but it is established that both approaches give the same final extent of hydration, when averaged over all mass, for conical nozzles with total angles as large as 90°. The one-dimensional model, having been shown to be adequate, is used to determine the effect of the following parameters on the extent of reaction in the nozzle: initial temperature and composition, throat diameter, angle of the nozzle, mean molecular weight and ratio of the principal specific heats of the gas, and velocity constants for reaction (I). The results are compared with experimental determinations of [H 5 O 2 + ]/[H 3 O + ] in a hydrogen flame at 2000 K. Such a comparison indicates first that the majority of the H 5 O 2 + ion observed in practice is produced during the sampling process, rather than in a flame, and secondly that the velocity constant for the three-body hydration process in (I) is 7 x 10 -28 molecule -2 ml 2 s -1 at 300 K. Criteria are given for ascertaining whether any particular chemical reaction is likely to proceed in these expansions and thereby falsify measurements of chemical composition. The implications of this work for sampling gas phase systems in general are illustrated by computations on the hydration of alkali metal ions.

2019 ◽  
Vol 33 (24) ◽  
pp. 1950284 ◽  
Author(s):  
L. S. Lima

Quantum entanglement is studied in the neighborhood of a topological transition in some topological insulator models such as the two-dimensional Qi–Wu–Zhang model or Chern insulator. The system describes electrons hopping in two-dimensional chains. For the one-dimensional model case, there exist staggered hopping amplitudes. Our results show a strong effect of sudden variation of the topological charge Q in the neighborhood of phase transition on quantum entanglement for all the cases analyzed.


Holzforschung ◽  
2002 ◽  
Vol 56 (5) ◽  
pp. 541-546 ◽  
Author(s):  
R. Baronas ◽  
F. Ivanauskas

Summary A model of wood drying under isothermal conditions taking into consideration coating of the surface of a specimen is presented in this paper in a two-dimensional formulation. The influence of the surface coating degree as well as geometrical shape of a wood specimen on the dynamics of drying is investigated. Exponentials, describing the dependence of the halfdrying time on the degree of coating of the edges, as well as on the ratio of the width to the thickness of the transverse section of specimens from the northern red oak (Quercus rubra), are presented for drying from above the fiber saturation point. This paper describes the conditions of usage of the two-dimensional moisture transfer model in contrast to the one-dimensional model for accurate prediction of the drying process taking into consideration the coating of edges of specimens having a rectangular transverse section. A measure of reliability of the one-dimensional model to predict the wood drying process of sawn boards is introduced in this paper.


1998 ◽  
Vol 65 (1) ◽  
pp. 171-177 ◽  
Author(s):  
S. Mu¨ftu¨ ◽  
T. S. Lewis ◽  
K. A. Cole ◽  
R. C. Benson

A theoretical analysis of the fluid mechanics of the air cushion of the air reversers used in web-handling systems is presented. A two-dimensional model of the air flow is derived by averaging the equations of conservation of mass and momentum over the clearance between the web and the reverser. The resulting equations are Euler’s equations with nonlinear source terms representing the air supply holes in the surface of the reverser. The equations are solved analytically for the one-dimensional case and numerically for the two-dimensional case. Results are compared with an empirical formula and the one-dimensional airjet theory developed for hovercraft. Conditions that maximize the air pressure supporting the web are analyzed and design guidelines are deduced.


1989 ◽  
Vol 21 (3) ◽  
pp. 363-374 ◽  
Author(s):  
H Ogawa ◽  
M Fujita

A one-dimensional model of nonmonocentric urban land use is extended into a two-dimensional space. Under the assumption of circular symmetry, it is shown that the equilibrium urban configurations in the two-dimensional space are essentially the same as those in the one-dimensional space except for the conditions on the parameters.


1972 ◽  
Vol 1 (13) ◽  
pp. 127
Author(s):  
David Prandle

A one-dimensional numerical model of a 340 mile section of the St. Lawrence River has been formulated to study tidal propagation. For a more detailed study of the flow distribution in a localised section of the river a two-dimensional model was used. A half mile square grid was used to schematise an area of approximately 20 miles long by 15 miles wide. This two-dimensional model was embodied within the one-dimensional model to permit a free interaction of flow across the boundaries. For the one-dimensional case, a comparison of model and prototype results is included for both elevation and velocity. For the two-dimensional model a comparison of flow distribution was made by using field results obtained from photographing ice movement and from drogue movement. To interpret the results of the two-dimensional model into a simple method of flow visualisation, use was made of animation techniques. A movie film was made that demonstrates both tidal rise and fall and the associated horizontal velocities. Elevation was reproduced by use of varying shades of coloured paper to simulate contours, velocities were represented by simulating drogue movement to produce smoke streaks.


Experimental investigations of automobile exhaust emissions were examined by combusting a mixture of propane and air within a multi-channel monolith. Chemical kinetics, mass transfer and heat transfer effects were studied using appropriate temperature and flow conditions to separate the effects. The results were used to construct both a one- and two-dimensional mathematical model. Simulations of monolith behaviour were then compared with observed performance. First-order chemical kinetics were observed for the low hydrocarbon concentrations examined in the temperature range 557–648 K, while mass transfer limitation was apparent at temperatures between 736 K and 769 K. Perturbations to inlet concentration and temperature were effected while studying monolith performance, and the responses recorded. Computer simulations using the two mathematical models predicted correct trends, but did not agree quantitatively with the experimental results. The one-dimensional model predicts both concentration and temperature responses to a change in inlet conditions better than the more comprehensive two-dimensional model, even when heat losses are taken into account. This is because experimentally determined heat and mass transfer coefficients are used for computations relating to the one-dimensional model, whereas these parameters were calculated theoretically in the two-dimensional model. Further computer simulations revealed discontinuities in the values of Nusselt numbers, values depending on elapsed time following a step change in inlet conditions and axial position along the monolith channel. This unusual feature is accounted for by a reversal in heat transfer between wall and bulk fluid as the reaction develops along the monolith channel.


1989 ◽  
Vol 111 (4) ◽  
pp. 1006-1014 ◽  
Author(s):  
S. T. Thynell ◽  
C. L. Merkle

A theoretical analysis of the interaction of volumetric absorption of concentrated solar radiation and convection in a two-dimensional, axisymmetric absorption chamber is presented. Previous analytical works on the absorption of the radiant energy in such chambers have employed one-dimensional models to show that very high temperatures and therefore high thermodynamic efficiencies are achievable. In this work, the effects of using collimated as opposed to isotropic irradiation on the absorption efficiency are investigated for the one-dimensional case, and the effects of employing a more realistic two-dimensional model on the absorption efficiency are studied. The model is based on the assumptions that the velocity profile is uniform and that conduction within the fluid is negligible compared to convective and radiative transports of energy. Several parameter surveys are performed and compared with the results of previous one-dimensional models.


2020 ◽  
Vol 26 (7) ◽  
pp. 28-44
Author(s):  
Mariam H. Daham ◽  
Basim Sh. Abed

        One and two-dimensional hydraulic models simulations are important to specify the hydraulic characteristics of unsteady flow in Al-Gharraf River in order to define the locations that facing problems and suggesting the necessary treatments. The reach in the present study is 58200m long and lies between Kut and Hai Cities. Both numerical models were simulated using HEC-RAS software, 5.0.4, with flow rates ranging from 100 to 350 m3/s. Multi-scenarios of gates openings of Hai Regulator were applied. While the openings of Al-Gharraf Head Regulator were ranged between 60cm to fully opened. The suitable manning roughness for the unsteady state was 0.025. The obtained results show that the average velocities for the one-dimensional model were ranged between 0.36 and 0.5 m/s,  and the average water surface elevations range between 15.14 m and 17.84 m. While these values ranged between 0.25 and 0.44 m/s and 14.125 and 18.82 m respectively for the two-dimensional model. The simulation results of the two-dimensional model were more accurate than their corresponding one-dimensional model, due to more agreement of these values with measured values, which achieved minimum values of the root mean square error and the determination coefficient.


1983 ◽  
Vol 4 ◽  
pp. 297-297
Author(s):  
G. Brugnot

We consider the paper by Brugnot and Pochat (1981), which describes a one-dimensional model applied to a snow avalanche. The main advance made here is the introduction of the second dimension in the runout zone. Indeed, in the channelled course, we still use the one-dimensional model, but, when the avalanche spreads before stopping, we apply a (x, y) grid on the ground and six equations have to be solved: (1) for the avalanche body, one equation for continuity and two equations for momentum conservation, and (2) at the front, one equation for continuity and two equations for momentum conservation. We suppose the front to be a mobile jump, with longitudinal velocity varying more rapidly than transverse velocity.We solve these equations by a finite difference method. This involves many topological problems, due to the actual position of the front, which is defined by its intersection with the reference grid (SI, YJ). In the near future our two directions of research will be testing the code on actual avalanches and improving it by trying to make it cheaper without impairing its accuracy.


Author(s):  
Geoffrey Hellman ◽  
Stewart Shapiro

This chapter develops a Euclidean, two-dimensional, regions-based theory. As with the semi-Aristotelian account in Chapter 2, the goal here is to recover the now orthodox Dedekind–Cantor continuum on a point-free basis. The chapter derives the Archimedean property for a class of readily postulated orientations of certain special regions, what are called “generalized quadrilaterals” (intended as parallelograms), by which the entire space is covered. Then the chapter generalizes this to arbitrary orientations, and then establishes an isomorphism between the space and the usual point-based one. As in the one-dimensional case, this is done on the basis of axioms which contain no explicit “extremal clause”, and we have no axiom of induction other than ordinary numerical (mathematical) induction.


Sign in / Sign up

Export Citation Format

Share Document