Integral properties of periodic gravity waves of finite amplitude

A number of exact relations are proved for periodic water waves of finite amplitude in water of uniform depth. Thus in deep water the mean fluxes of mass, momentum and energy are shown to be equal to 2T(4T—3F) and (3T—2V) crespectively, where T and V denote the kinetic and potential energies and c is the phase velocity. Some parametric properties of the solitary wave are here generalized, and some particularly simple relations are proved for variations of the Lagrangian The integral properties of the wave are related to the constants Q, R and S which occur in cnoidal wave theory. The speed, momentum and energy of deep-water waves are calculated numerically by a method employing a new expansion parameter. With the aid of Padé approximants, convergence is obtained for waves having amplitudes up to and including the highest. For the highest wave, the computed speed and amplitude are in agreement with independent calculations by Yamada and Schwartz. At the same time the computations suggest that the speed and energy, for waves of a given length, are greatest when the height is less than the maximum. In this respect the present results tend to confirm previous computations on solitary waves.

Modern applications of water-wave studies, as well as some recent theoretical developments, have shown the need for a systematic and accurate calculation of the characteristics of steady, progressive gravity waves of finite amplitude in water of arbitrary uniform depth. In this paper the speed, momentum, energy and other integral properties are calculated accurately by means of series expansions in terms of a perturbation parameter whose range is known precisely and encompasses waves from the lowest to the highest possible. The series are extended to high order and summed with Padé approximants. For any given wavelength and depth it is found that the highest wave is not the fastest. Moreover the energy, momentum and their fluxes are found to be greatest for waves lower than the highest. This confirms and extends the results found previously for solitary and deep-water waves. By calculating the profile of deep-water waves we show that the profile of the almost-steepest wave, which has a sharp curvature at the crest, intersects that of a slightly less-steep wave near the crest and hence is lower over most of the wavelength. An integration along the wave profile cross-checks the Padé-approximant results and confirms the intermediate energy maximum. Values of the speed, energy and other integral properties are tabulated in the appendix for the complete range of wave steepnesses and for various ratios of depth to wavelength, from deep to very shallow water.


1966 ◽  
Vol 1 (10) ◽  
pp. 11 ◽  
Author(s):  
Arthur Brebner ◽  
J.A. Askew ◽  
S.W. Law

On the basis of non-viscous small amplitude firstorder theory the maximum value of the horizontal orbital motion at the bed in water of constant depth his given by /U/n yy* »* " r •»** */i where k = /L, H is the wave height crest to trough, T is the period, and L the wave length (L = Sry2jr Arf 2*%/L ). On the basis of finite amplitude wave theory where the particle orbits are not closed ana by the insertion of the viscous laminar boundary layer (the conducti6n solution) the mean drift velocity or mass transport velocity on a perfectly smooth bed is given by Longuet- Higgins (1952) as 7, K H* kcr where


Progressive, irrotational gravity waves of constant form exist as a two-parameter family. The first parameter, the ratio of mean depth to wavelength, varies from zero (the solitary wave) to infinity (the deep-water wave). The second parameter, the wave height or amplitude, varies from zero (the infinitesimal wave) to a limiting value dependent on the first parameter. For limiting waves the wave crest ceases to be rounded and becomes angled, with an included angle of 120°. Most methods of calculating finite-amplitude waves use either a form of series expansion or the solution of an integral equation. For waves nearing the limiting amplitude many terms (or nodal points) are needed to describe the wave form accurately. Consequently the accuracy even of recent solutions on modern computers can be improved upon, except at the deep-water end of the range. The present work extends an integral equation technique used previously in which the angled crest of the limiting wave is included as a specific term, derived from the well known Stokes corner flow. This term is now supplemented by a second term, proposed by Grant in a study of the flow near the crest. Solutions comprising 80 terms at the shallow-water end of the range, reducing to 20 at the deep-water end, have defined many field and integral properties of the flow to within 1 to 2 parts in 106. It is shown that without the new crest term this level of accuracy would have demanded some hundreds of terms while without either crest term many thousands of terms would have been needed. The practical limits of the computing range are shown to correspond, to working accuracy, with the theoretical extremes of the solitary wave and the deep-water wave. In each case the results agree well with several previous accurate solutions and it is considered that the accuracy has been improved. For example, the height: depth ratio of the solitary wave is now estimated to be 0.833 197 and the height: wavelength ratio of the deep-water wave to be 0.141063. The results are presented in detail to facilitate further theoretical study and early practical application. The coefficients defining the wave motion are given for 22 cases, five of which, including the two extremes, are fully documented with tables of displacement, velocity, acceleration, pressure and time. Examples of particle orbits and drift profiles are presented graphically and are shown for the extreme waves to agree very closely with simplified calculations by Longuet-Higgins. Finally, the opportunity has been taken to calculate to greater accuracy the long-term Lagrangian-mean angular momentum of the maximum deep-water wave, according to the recent method proposed by Longuet-Higgins, with the conclusion that the level of action is slightly above the crest.


1980 ◽  
Vol 100 (4) ◽  
pp. 801-810 ◽  
Author(s):  
D. B. Olfe ◽  
James W. Rottman

The classical series expansion procedure of Michell is used to calculate some new highest-wave solutions. These solutions are shown to correspond to the types of gravity waves studied recently by Chen & Saffman (1980). Results are presented for wave profiles, phase speeds, and kinetic and potential energies.


Author(s):  
Didier Clamond

Steady two-dimensional surface capillary–gravity waves in irrotational motion are considered on constant depth. By exploiting the holomorphic properties in the physical plane and introducing some transformations of the boundary conditions at the free surface, new exact relations and equations for the free surface only are derived. In particular, a physical plane counterpart of the Babenko equation is obtained. This article is part of the theme issue ‘Nonlinear water waves’.


1994 ◽  
Vol 262 ◽  
pp. 265-291 ◽  
Author(s):  
Mansour Ioualalen ◽  
Christian Kharif

A numerical procedure has been developed to study the linear stability of nonlinear three-dimensional progressive gravity waves on deep water. The three-dimensional patterns considered herein are short-crested waves which may be produced by two progressive plane waves propagating at an oblique angle, γ, to each other. It is shown that for moderate wave steepness the dominant resonances are sideband-type instabilities in the direction of propagation and, depending on the value of γ, also in the transverse direction. It is also shown that three-dimensional progressive gravity waves are less unstable than two-dimensional progressive gravity waves.


2016 ◽  
Vol 810 ◽  
pp. 5-24 ◽  
Author(s):  
M. Hirata ◽  
S. Okino ◽  
H. Hanazaki

Capillary–gravity waves resonantly excited by an obstacle (Froude number: $Fr=1$) are investigated by the numerical solution of the Euler equations. The radiation of short waves from the long nonlinear waves is observed when the capillary effects are weak (Bond number: $Bo<1/3$). The upstream-advancing solitary wave radiates a short linear wave whose phase velocity is equal to the solitary waves and group velocity is faster than the solitary wave (soliton radiation). Therefore, the short wave is observed upstream of the foremost solitary wave. The downstream cnoidal wave also radiates a short wave which propagates upstream in the depression region between the obstacle and the cnoidal wave. The short wave interacts with the long wave above the obstacle, and generates a second short wave which propagates downstream. These generation processes will be repeated, and the number of wavenumber components in the depression region increases with time to generate a complicated wave pattern. The upstream soliton radiation can be predicted qualitatively by the fifth-order forced Korteweg–de Vries equation, but the equation overestimates the wavelength since it is based on a long-wave approximation. At a large Bond number of $Bo=2/3$, the wave pattern has the rotation symmetry against the pattern at $Bo=0$, and the depression solitary waves propagate downstream.


Accurate integral properties of plane periodic deep-water waves of amplitudes up to the steepest are tabulated by Longuet-Higgins (1975). These are used to define an averaged Lagrangian which, following Whitham, is used to describe the properties of slowly varying wave trains. Two examples of waves on large-scale currents are examined in detail. One flow is that of a shearing current, V ( x ) j , which causes waves to be refracted. The other flow, U ( x ) i , varies in the direction of wave propagation and causes waves to either steepen or become more gentle. Some surprising features are found.


1993 ◽  
Vol 252 ◽  
pp. 703-711 ◽  
Author(s):  
Michael S. Longuet-Higgins

The existence of steady solitary waves on deep water was suggested on physical grounds by Longuet-Higgins (1988) and later confirmed by numerical computation (Longuet-Higgins 1989; Vanden-Broeck & Dias 1992). Their numerical methods are accurate only for waves of finite amplitude. In this paper we show that solitary capillary-gravity waves of small amplitude are in fact a special case of envelope solitons, namely those having a carrier wave of length 2π(T/ρg)1½2 (g = gravity, T = surface tension, ρ = density). The dispersion relation $c^2 = 2(1-\frac{11}{32}\alpha^2_{\max)$ between the speed c and the maximum surface slope αmax is derived from the nonlinear Schrödinger equation for deep-water solitons (Djordjevik & Redekopp 1977) and is found to provide a good asymptote for the numerical calculations.


1987 ◽  
Vol 177 ◽  
pp. 293-306 ◽  
Author(s):  
M. S. Longuet-Higgins

To understand the imaging of the sea surface by radar, it is useful to know the theoretical variations in the wavelength and steepness of short gravity waves propagated over the surface of a train of longer gravity waves of finite amplitude. Such variations may be calculated once the orbital accelerations and surface velocities in the longer waves have been accurately determined – a non-trivial computational task.The results show that the linearized theory used previously for the longer waves is generally inadequate. The fully nonlinear theory used here indicates that for longer waves having a steepness parameter AK = 0.4, for example, the short-wave steepness can be increased at the crests of the longer waves by a factor of order 8, compared with its value at the mean level. (Linear theory gives a factor less than 2.)The calculations so far reported are for free, irrotational gravity waves travelling in the same or directly opposite sense to the longer waves. However, the method of calculation could be extended without essential difficulty so as to include effects of surface tension, energy dissipation due to short-wave breaking, surface wind-drift currents, and to arbitrary angles of wave propagation.


Sign in / Sign up

Export Citation Format

Share Document