Capillary–gravity waves of solitary type and envelope solitons on deep water

1993 ◽  
Vol 252 ◽  
pp. 703-711 ◽  
Author(s):  
Michael S. Longuet-Higgins

The existence of steady solitary waves on deep water was suggested on physical grounds by Longuet-Higgins (1988) and later confirmed by numerical computation (Longuet-Higgins 1989; Vanden-Broeck & Dias 1992). Their numerical methods are accurate only for waves of finite amplitude. In this paper we show that solitary capillary-gravity waves of small amplitude are in fact a special case of envelope solitons, namely those having a carrier wave of length 2π(T/ρg)1½2 (g = gravity, T = surface tension, ρ = density). The dispersion relation $c^2 = 2(1-\frac{11}{32}\alpha^2_{\max)$ between the speed c and the maximum surface slope αmax is derived from the nonlinear Schrödinger equation for deep-water solitons (Djordjevik & Redekopp 1977) and is found to provide a good asymptote for the numerical calculations.

Modern applications of water-wave studies, as well as some recent theoretical developments, have shown the need for a systematic and accurate calculation of the characteristics of steady, progressive gravity waves of finite amplitude in water of arbitrary uniform depth. In this paper the speed, momentum, energy and other integral properties are calculated accurately by means of series expansions in terms of a perturbation parameter whose range is known precisely and encompasses waves from the lowest to the highest possible. The series are extended to high order and summed with Padé approximants. For any given wavelength and depth it is found that the highest wave is not the fastest. Moreover the energy, momentum and their fluxes are found to be greatest for waves lower than the highest. This confirms and extends the results found previously for solitary and deep-water waves. By calculating the profile of deep-water waves we show that the profile of the almost-steepest wave, which has a sharp curvature at the crest, intersects that of a slightly less-steep wave near the crest and hence is lower over most of the wavelength. An integration along the wave profile cross-checks the Padé-approximant results and confirms the intermediate energy maximum. Values of the speed, energy and other integral properties are tabulated in the appendix for the complete range of wave steepnesses and for various ratios of depth to wavelength, from deep to very shallow water.


A number of exact relations are proved for periodic water waves of finite amplitude in water of uniform depth. Thus in deep water the mean fluxes of mass, momentum and energy are shown to be equal to 2T(4T—3F) and (3T—2V) crespectively, where T and V denote the kinetic and potential energies and c is the phase velocity. Some parametric properties of the solitary wave are here generalized, and some particularly simple relations are proved for variations of the Lagrangian The integral properties of the wave are related to the constants Q, R and S which occur in cnoidal wave theory. The speed, momentum and energy of deep-water waves are calculated numerically by a method employing a new expansion parameter. With the aid of Padé approximants, convergence is obtained for waves having amplitudes up to and including the highest. For the highest wave, the computed speed and amplitude are in agreement with independent calculations by Yamada and Schwartz. At the same time the computations suggest that the speed and energy, for waves of a given length, are greatest when the height is less than the maximum. In this respect the present results tend to confirm previous computations on solitary waves.


2010 ◽  
Vol 76 (5) ◽  
pp. 665-671 ◽  
Author(s):  
D. JOVANOVIC ◽  
P. K. SHUKLA ◽  
B. ELIASSON

AbstractThe amplitude modulation of a finite amplitude drift wave by zonal flows in a non-uniform magnetoplasma is considered. The evolution of a nonlinearly coupled drift wave-zonal flow (DW-ZF) system is governed by a nonlinear equation for the slowly varying envelope of the drift waves, which drives (via the Reynolds stress of the drift wave envelope) the second equation for zonal flows. The nonlinear dispersion relation for the modulational instability of a drift wave pump is derived and analyzed. In a special case, the DW-ZF system of equations reduces to the cubic nonlinear Schrödinger equation, which admits localized solutions in the form of DW envelope solitons, accompanied by a shock-like ZF structure. Numerical solutions of the nonlinearly coupled DW-ZF systems reveal that an arbitrary spatial distribution of the DW rapidly decays into an array of localized drift wave structures, propagating with different speeds, that are robust and, in many respect, behave as solitons. The corresponding ZF evolves into the sequence of shocks that produces a strong shearing, i.e. multiple plasma flows in alternating directions.


1973 ◽  
Vol 57 (4) ◽  
pp. 797-802 ◽  
Author(s):  
Dennis Holliday

The propagation of nonlinear gravity–capillary surface waves in a deep slowly varying current is investigated using the conservation equations in the eikonal approximation. Graphical comparisons are made between solutions of the wave- slope and wavenumber equations for infinitesimal waves and finite amplitude waves. Finite amplitude effects are shown to be weaker for small amplitude capillary waves than for gravity waves. The ‘wave barrier’ noted by Gargett & Hughes (1972) for infinitesimal gravity waves on a slowly varying current is seen to be removed by finite amplitude effects.


Einstein investigated the problem of the propagation of gravitational waves in 1916 and 1918. The special case of plane waves of small amplitude was considered by Weyl, who showed that such waves may be regarded as the result of superposing weaves of three types. Eddington found that of these only one, the transverse-transverse, is real, and identified a particular type of electromagnetic transverse-transverse wave with light. The gravitational potentials in his solution, however, contain an aperiodic term which increases without limit, from which it is inferred that light cannot be propagated indefinitely either in space or time. We considered the case of plane waves of finite amplitude and came to the conclusion that an infinite plane electromagnetic wave cannot be propagated without change of wave-form, and suggested that the relativity theory of light must be approached by way of the study of divergent waves. The present discussion is confined to waves of a purely gravitational nature.


Progressive, irrotational gravity waves of constant form exist as a two-parameter family. The first parameter, the ratio of mean depth to wavelength, varies from zero (the solitary wave) to infinity (the deep-water wave). The second parameter, the wave height or amplitude, varies from zero (the infinitesimal wave) to a limiting value dependent on the first parameter. For limiting waves the wave crest ceases to be rounded and becomes angled, with an included angle of 120°. Most methods of calculating finite-amplitude waves use either a form of series expansion or the solution of an integral equation. For waves nearing the limiting amplitude many terms (or nodal points) are needed to describe the wave form accurately. Consequently the accuracy even of recent solutions on modern computers can be improved upon, except at the deep-water end of the range. The present work extends an integral equation technique used previously in which the angled crest of the limiting wave is included as a specific term, derived from the well known Stokes corner flow. This term is now supplemented by a second term, proposed by Grant in a study of the flow near the crest. Solutions comprising 80 terms at the shallow-water end of the range, reducing to 20 at the deep-water end, have defined many field and integral properties of the flow to within 1 to 2 parts in 106. It is shown that without the new crest term this level of accuracy would have demanded some hundreds of terms while without either crest term many thousands of terms would have been needed. The practical limits of the computing range are shown to correspond, to working accuracy, with the theoretical extremes of the solitary wave and the deep-water wave. In each case the results agree well with several previous accurate solutions and it is considered that the accuracy has been improved. For example, the height: depth ratio of the solitary wave is now estimated to be 0.833 197 and the height: wavelength ratio of the deep-water wave to be 0.141063. The results are presented in detail to facilitate further theoretical study and early practical application. The coefficients defining the wave motion are given for 22 cases, five of which, including the two extremes, are fully documented with tables of displacement, velocity, acceleration, pressure and time. Examples of particle orbits and drift profiles are presented graphically and are shown for the extreme waves to agree very closely with simplified calculations by Longuet-Higgins. Finally, the opportunity has been taken to calculate to greater accuracy the long-term Lagrangian-mean angular momentum of the maximum deep-water wave, according to the recent method proposed by Longuet-Higgins, with the conclusion that the level of action is slightly above the crest.


1980 ◽  
Vol 101 (3) ◽  
pp. 567-581 ◽  
Author(s):  
P. G. Saffman

Conditions are found for the appearance of non-uniform progressive waves of permanent form from a long-wave modulation of a finite-amplitude Stokes wave on deep water. The waveheight at which the modulated waves can occur is a very slowly decreasing function of the modulation wavelength for values up to 150 times the original wavelength. Some qualitative remarks are made about the problem of determining the stability of the new waves.


1970 ◽  
Vol 40 (2) ◽  
pp. 307-314 ◽  
Author(s):  
S. P. Lin

Subcritically stable motion of long gravity waves of finite amplitude in a liquid layer flowing down an inclined plane is shown to be impossible. However, super-critically stable wave régimes for such flows are found and curves of constant wave amplitude in such régimes are obtained. The mechanism of non-linear stability is investigated by considering the energy transfer between the mean flow and the disturbances. The results obtained show that the mechanism of stability in a parallel flow with a free surface is quite different from that in a parallel flow without a free surface.


Sign in / Sign up

Export Citation Format

Share Document