An integral-equation method for determining the fluid motion due to a cylinder heaving on water of finite depth

The method of integral equations is used here to calculate the virtual mass of a half-immersed cylinder heaving periodically on water of finite constant depth. For general sections this method is more appropriate than the method of multipoles; particular sections that are considered are the circle and the ellipse. Green’s theorem is applied to the potential and to a fundamental solution (wave source) satisfying the conditions at the free surface, at the bottom and at infinity, but not necessarily on the body. An integral equation for the potential on the body only is thus obtained. For the simplest choice of fundamental solution the method breaks down at a discrete infinite set of frequencies, as is well known. When the fundamental solution was modified, however, a different integral equation could be obtained for the same unknown function and this was found not to break down for the circle and ellipse. The present numerical results are in good agreement with those obtained by the method of multipoles which for the circle is more efficient than the method of integral equations but which is not readily applicable to other sections. Much effort now goes into such calculations.

1986 ◽  
Author(s):  
D. E. Wilson

A new singular integral equation method has been developed for solving the full nonlinear potential flow about an arbitrary body. The method bears some resemblance to conventional integral methods, however it is inherently different in that the surface geometry is contained explicitly in the resulting integral equations. Several analytical results are exploited to reduce the two-dimensional integral equations to a one-dimensional problem on the body surface. The integral equation is inverted so that the airfoil geometry is given as an explicit function of the velocity field. The resulting one-dimensional integral equations are solved numerically and the results are compared with existing theoretical methods for both analysis and inverse design problems.


2007 ◽  
Vol 1 (1) ◽  
Author(s):  
Thomas J. Rudolphi

<br /><br /> <table width="530" border="0" cellspacing="0" cellpadding="0"> <tr> <td align="left" valign="top"> <a name="abstract"></a> <span class="subtitle" style="font-weight:bold">Abstract</span><br /> <p><img src="http://ejbe.libraries.rutgers.edu/files/rizzo.gif" align=left HSPACE=20>This is the first of two special issues of the Electronic Journal of Boundary Elements dedicated to Frank Rizzo. To say that Frank Rizzo played an important role in the development of what he referred to as “boundary integral equations� would not give much credit to where much credit is due. While it could be argued that the use of integral equations to formulate and form a computational basis of many of the problems of applied mathematics and engineering would probably have been inevitably developed, it was Frank’s seminal work on using the integral equation approach to classical elastostatics that set a whole new research area into motion. His dissertation (which we thought would be of interest to include in this issue) topic, as suggested by his mentor Marvin Stippes at the University of Illinois, and subsequently so well documented in the oft-cited paper “An Integral Equation Approach to Boundary Value Problems of Classical Elastostatics�, Quarterly of Applied Mechanics, 1967, represented the quantum step in the use of integral equations for classical scalar potential problems to the vector potential problems of practical engineering significance. The theoretical basis for this development was Betti’s reciprocal work theorem with the fundamental (response to a point force) solution of the equations of elastostatics, but it was Frank Rizzo who actually breathed the new life into this classical mathematics. A nontrivial contribution of Frank’s original work was to not only to achieve the singular integral equation formulation, but also the systematic methodology of reducing the elegant integral equation formulation to well conditioned, linear algebraic equations by proper analytical integration of the singular terms. Those combined theoretical and practical developments by Frank set into motion a whole new and modern approach to numerically solving partial differential equations, at least of the elliptic type. With Frank’s hard work and the recognition of its elegance and potential by several of his early disciples, the integral equation method blossomed into a powerful and practical computational methodology that would eventually be called “boundary elements�. Amongst the early disciples of the integral equation method, several of which contributed significantly to advancing the methodology to a sophisticated and now mature state, are the authors of this issue and its sequel dedicated to Frank. It is undoubtedly fair to say that most of these authors were, at one time or even continuously, colleagues and personal friends of Frank Rizzo. Frank’s contributions to the boundary integral equation method spanned nearly four decades, from roughly 1964 to 2001. I, too, have been very privileged to become involved with this field in the 1970’s and later to work side by side with Frank, especially in that part of the development of the methodology for what is now referred to as “hypersingular� integral equations. I’m sure that all the present authors can recall numerous occasions and conversations with Frank on a technical point or issue regarding the application of “his� boundary integral method to their own problem of interest. Throughout his productive career, his easy going, collegial, engaging, yet rigorous style earned him respect and admiration that surely befits the “father� of modern boundary integral methods. This commemorative sequence of two issues represents only a small token of tribute and recognition that Frank Rizzo so much deserves for his “singular� contributions to the field that he virtually invented, developed, promoted and nurtured to maturity. Thomas J. Rudolphi Iowa State University <br /><br /><br /> </td> </tr> </table>


2021 ◽  
Vol 928 ◽  
Author(s):  
X. Guan ◽  
J.-M. Vanden-Broeck ◽  
Z. Wang

Two-dimensional periodic interfacial gravity waves travelling between two homogeneous fluids of finite depth are considered. A boundary-integral-equation method coupled with Fourier expansions of the unknown functions is used to obtain highly accurate solutions. Our numerical results show excellent agreement with those already obtained by Maklakov & Sharipov using a different scheme (J. Fluid Mech., vol. 856, 2018, pp. 673–708). We explore the global bifurcation mechanism of periodic interfacial waves and find three types of limiting wave profiles. The new families of solutions appear either as isolated branches or as secondary branches bifurcating from the primary branch of solutions.


The integral-equation method of solving the problem of the diffraction of electromagnetic waves by a perfectly conducting plane screen has been criticized by C. J. Bouwkamp, who claims that it is valid only when certain boundary conditions are satisfied on the edge of the screen. This criticism is answered. It is also shown that, since the equations to be solved are differential-integral equations, an arbitrary function arises in the solution and that this arbitrary function may be chosen so that, although there are singularities at the edge of the screen, there is no radiation of energy from the edge. As an illustration, the three-dimensional problem of diffraction by a half-plane is solved.


1984 ◽  
Vol 51 (3) ◽  
pp. 574-580 ◽  
Author(s):  
J. T. Katsikadelis ◽  
A. E. Armena`kas

In this investigation the boundary integral equation (BIE) method with numerical evaluation of the boundary integral equations is developed for analyzing clamped plates of any shape resting on an elastic foundation. A numerical technique for the solution to the boundary integral equations is presented and numerical results are obtained and compared with those existing from analytical solutions. The effectiveness of the BIE method is demonstrated.


2006 ◽  
Vol 306-308 ◽  
pp. 465-470 ◽  
Author(s):  
Kuang-Chong Wu

A novel integral equation method is developed in this paper for the analysis of two-dimensional general piezoelectric cracked bodies. In contrast to the conventional boundary integral methods based on reciprocal work theorem, the present method is derived from Stroh’s formalism for anisotropic elasticity in conjunction with Cauchy’s integral formula. The proposed boundary integral equations contain generalized boundary displacement (displacements and electric potential) gradients and generalized tractions (tractions and electric displacement) on the non-crack boundary, and the generalized dislocations on the crack lines. The boundary integral equations can be solved using Gaussian-type integration formulas without dividing the boundary into discrete elements. The crack-tip singularity is explicitly incorporated and the generalized intensity factors can be computed directly. Numerical examples of generalized stress intensity factors are given to illustrate the effectiveness and accuracy of the present method.


2018 ◽  
Vol 173 ◽  
pp. 03001
Author(s):  
Pavel Akishin ◽  
Andrey Sapozhnikov

The volume integral equation method is considered for magnetic systems. New modeling results are reported.


2021 ◽  
Vol 83 (1) ◽  
pp. 76-86
Author(s):  
A.A. Belov ◽  
A.N. Petrov

The application of non-classical approach of the boundary integral equation method in combination with the integral Laplace transform in time to anisotropic elastic wave modeling is considered. In contrast to the classical approach of the boundary integral equation method which is successfully implemented for solving three-dimensional isotropic problems of the dynamic theory of elasticity, viscoelasticity and poroelasticity, the alternative nonclassical formulation of the boundary integral equations method is presented that employs regular Fredholm integral equations of the first kind (integral equations on a plane wave). The construction of such boundary integral equations is based on the structure of the dynamic fundamental solution. The approach employs the explicit boundary integral equations. The inverse Laplace transform is constructed numerically by the Durbin method. A numerical solution of the dynamic problem of anisotropic elasticity theory based on the boundary integral equations method in a nonclassical formulation is presented. The boundary element scheme of the boundary integral equations method is built on the basis of a regular integral equation of the first kind. The problem is solved in anisotropic formulation for the load acting along the normal in the form of the Heaviside function on the cube face weakened by a cubic cavity. The obtained boundary element solutions are compared with finite element solutions. Numerical results prove the efficiency of using boundary integral equations on a single plane wave in solving three-dimensional anisotropic dynamic problems of elasticity theory. The convergence of boundary element solutions is studied on three schemes of surface discretization. The achieved calculation accuracy is not inferior to the accuracy of boundary element schemes for classical boundary integral equations. Boundary element analysis of solutions for a cube with and without a cavity is carried out.


1998 ◽  
Vol 65 (2) ◽  
pp. 310-319 ◽  
Author(s):  
Nao-Aki Noda ◽  
Tadatoshi Matsuo

This paper deals with numerical solutions of singular integral equations in interaction problems of elliptical inclusions under general loading conditions. The stress and displacement fields due to a point force in infinite plates are used as fundamental solutions. Then, the problems are formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where the unknowns are the body force densities distributed in infinite plates having the same elastic constants as those of the matrix and inclusions. To determine the unknown body force densities to satisfy the boundary conditions, four auxiliary unknown functions are derived from each body force density. It is found that determining these four auxiliary functions in the range 0≦φk≦π/2 is equivalent to determining an original unknown density in the range 0≦φk≦2π. Then, these auxiliary unknowns are approximated by using fundamental densities and polynomials. Initially, the convergence of the results such as unknown densities and interface stresses are confirmed with increasing collocation points. Also, the accuracy is verified by examining the boundary conditions and relations between interface stresses and displacements. Randomly or regularly distributed elliptical inclusions can be treated by combining both solutions for remote tension and shear shown in this study.


2012 ◽  
Vol 2012 ◽  
pp. 1-29 ◽  
Author(s):  
Arif A. M. Yunus ◽  
Ali H. M. Murid ◽  
Mohamed M. S. Nasser

We present a boundary integral equation method for conformal mapping of unbounded multiply connected regions onto five types of canonical slit regions. For each canonical region, three linear boundary integral equations are constructed from a boundary relationship satisfied by an analytic function on an unbounded multiply connected region. The integral equations are uniquely solvable. The kernels involved in these integral equations are the modified Neumann kernels and the adjoint generalized Neumann kernels.


Sign in / Sign up

Export Citation Format

Share Document