scholarly journals Canonical multi-symplectic structure on the total exterior algebra bundle

Author(s):  
Thomas J Bridges

The aim of this paper is to construct multi-symplectic structures starting with the geometry of an oriented Riemannian manifold, independent of a Lagrangian or a particular partial differential equation (PDE). The principal observation is that on an n -dimensional orientable manifold M there is a canonical quadratic form Θ associated with the total exterior algebra bundle on M . On the fibre, which has dimension 2 n , the form Θ can be locally decomposed into n classical symplectic structures. When concatenated, these n -symplectic structures define a partial differential operator, J ∂ , which turns out to be a Dirac operator with multi-symplectic structure. The operator J ∂ generalizes the product operator J (d/d t ) in classical symplectic geometry, and M is a generalization of the base manifold (i.e. time) in classical Hamiltonian dynamics. The structure generated by Θ provides a natural setting for analysing a class of covariant nonlinear gradient elliptic operators. The operator J ∂ is elliptic, and the generalization of Hamiltonian systems, J ∂ Z =∇ S ( Z ), for a section Z of the total exterior algebra bundle, is also an elliptic PDE. The inverse problem—find S ( Z ) for a given elliptic PDE—is shown to be related to a variant of the Legendre transform on k -forms. The theory is developed for flat base manifolds, but the constructions are coordinate free and generalize to Riemannian manifolds with non-trivial curvature. Some applications and implications of the theory are also discussed.

2021 ◽  
pp. 2150030
Author(s):  
Ivan Contreras ◽  
Nicolás Martínez Alba

In this paper, we extend the AKSZ formulation of the Poisson sigma model to more general target spaces, and we develop the general theory of graded geometry for poly-symplectic and poly-Poisson structures. In particular, we prove a Schwarz-type theorem and transgression for graded poly-symplectic structures, recovering the action functional and the poly-symplectic structure of the reduced phase space of the poly-Poisson sigma model, from the AKSZ construction.


2019 ◽  
Vol 16 (supp01) ◽  
pp. 1940008 ◽  
Author(s):  
Roisin Braddell ◽  
Amadeu Delshams ◽  
Eva Miranda ◽  
Cédric Oms ◽  
Arnau Planas

In this paper, we analyze in detail a collection of motivating examples to consider [Formula: see text]-symplectic forms and folded-type symplectic structures. In particular, we provide models in Celestial Mechanics for every [Formula: see text]-symplectic structure. At the end of the paper, we introduce the odd-dimensional analogue to [Formula: see text]-symplectic manifolds: [Formula: see text]-contact manifolds.


2014 ◽  
Vol 23 (12) ◽  
pp. 1442006 ◽  
Author(s):  
Laurent Freidel ◽  
Robert G. Leigh ◽  
Djordje Minic

In a natural extension of the relativity principle, we speculate that a quantum theory of gravity involves two fundamental scales associated with both dynamical spacetime as well as dynamical momentum space. This view of quantum gravity is explicitly realized in a new formulation of string theory which involves dynamical phase-space and in which spacetime is a derived concept. This formulation naturally unifies symplectic geometry of Hamiltonian dynamics, complex geometry of quantum theory and real geometry of general relativity. The spacetime and momentum space dynamics, and thus dynamical phase-space, is governed by a new version of the renormalization group (RG).


2021 ◽  
Vol 8 (26) ◽  
pp. 311-319
Author(s):  
Layan El Hajj ◽  
Henrik Shahgholian

In this paper we prove symmetry for solutions to the semi-linear elliptic equation Δ u = f ( u )  in  B 1 , 0 ≤ u > M ,  in  B 1 , u = M ,  on  ∂ B 1 , \begin{equation*} \Delta u = f(u) \quad \text { in } B_1, \qquad 0 \leq u > M, \quad \text { in } B_1, \qquad u = M, \quad \text { on } \partial B_1, \end{equation*} where M > 0 M>0 is a constant, and B 1 B_1 is the unit ball. Under certain assumptions on the r.h.s. f ( u ) f (u) , the C 1 C^1 -regularity of the free boundary ∂ { u > 0 } \partial \{u>0\} and a second order asymptotic expansion for u u at free boundary points, we derive the spherical symmetry of solutions. A key tool, in addition to the classical moving plane technique, is a boundary Harnack principle (with r.h.s.) that replaces Serrin’s celebrated boundary point lemma, which is not available in our case due to lack of C 2 C^2 -regularity of solutions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Meriem Belahdji ◽  
Setti Ayad ◽  
Mohammed Hichem Mortad

Abstract The aim of this paper is to provide some a priori estimates for a beam-like operator. Some applications and counterexamples are also given.


Author(s):  
David D. Nolte

Hamiltonian dynamics are derived from the Lagrange equations through the Legendre Transform that expresses the equations of dynamics in terms of the Hamiltonian, which is a function of the generalized coordinates and of their conjugate momenta. Consequences of the Lagrangian and Hamiltonian equations of dynamics are conservation of energy and conservation of momentum, with applications to collisions and orbital dynamics. Action-angle coordinates can be defined for integrable Hamiltonian systems and reduce all dynamical motions to phase space trajectories on a hyperdimensional torus.


1997 ◽  
Vol 145 ◽  
pp. 125-142
Author(s):  
Takeshi Mandai

Consider a partial differential operator(1.1) where K is a non-negative integer and aj,a are real-analytic in a neighborhood of (0, 0)


Sign in / Sign up

Export Citation Format

Share Document