Strategies for guided-wave structural health monitoring

Author(s):  
A.J Croxford ◽  
P.D Wilcox ◽  
B.W Drinkwater ◽  
G Konstantinidis

Structural health monitoring (SHM) using guided waves is one of the only ways in which damage anywhere in a structure can be detected using a sparse array of permanently attached sensors. To distinguish damage from structural features, some form of comparison with damage-free reference data is essential, and here subtraction is considered. The detectability of damage is determined by the amplitude of residual signals from structural features remaining after the subtraction of reference data. These are non-zero due to changing environmental conditions such as temperature. In this paper, the amplitude of the residual signals is quantified for different guided-wave SHM strategies. Comparisons are made between two methods of reference signal subtraction and between two candidate sensor configurations. These studies allow estimates to be made of the number of sensors required per unit area to reliably detect a prescribed type of damage. It is shown that the number required is prohibitively high, even in the presence of modest temperature fluctuations, hence some form of temperature compensation is absolutely essential for guided-wave SHM systems to be viable. A potential solution is examined and shown to provide an improvement in signal suppression of approximately 30 dB, which corresponds to two orders of magnitude reduction in the number of sensors required.

2020 ◽  
pp. 147592172096512
Author(s):  
Stefano Mariani ◽  
Yuan Liu ◽  
Peter Cawley

Practical ultrasonic structural health monitoring systems must be able to deal with temperature changes and some signal amplitude/phase drift over time; these issues have been investigated extensively with low-frequency-guided wave systems but much less work has been done on bulk wave systems operating in the megahertz frequency range. Temperature and signal drift compensation have been investigated on a thick copper block specimen instrumented with a lead zirconate titanate disc excited at a centre frequency of 2 MHz, both in the laboratory at ambient temperature and in an environmental chamber over multiple 20°C–70°C temperature cycles. It has been shown that the location-specific temperature compensation scheme originally developed for guided wave inspection significantly out-performs the conventional combined optimum baseline selection and baseline signal stretch method. The test setup was deliberately not optimised, and the signal amplitude and phase were shown to drift with time as the system was temperature cycled in the environmental chamber. It was shown that the ratio of successive back wall reflections at a given temperature was much more stable with time than the amplitude of a single reflection and that this ratio can be used to track changes in the reflection coefficient from the back wall with time. It was also shown that the location-specific temperature compensation method can be used to compensate for changes in the back wall reflection ratio with temperature. Clear changes in back wall reflection ratio were produced by the shadow effect of simulated damage in the form of 1-mm diameter flat-bottomed holes, and the signal-to-noise ratio was such that much smaller defects would be detectable.


2019 ◽  
Vol 9 (21) ◽  
pp. 4600 ◽  
Author(s):  
Yevgeniya Lugovtsova ◽  
Jannis Bulling ◽  
Christian Boller ◽  
Jens Prager

Guided waves (GW) are of great interest for non-destructive testing (NDT) and structural health monitoring (SHM) of engineering structures such as for oil and gas pipelines, rails, aircraft components, adhesive bonds and possibly much more. Development of a technique based on GWs requires careful understanding obtained through modelling and analysis of wave propagation and mode-damage interaction due to the dispersion and multimodal character of GWs. The Scaled Boundary Finite Element Method (SBFEM) is a suitable numerical approach for this purpose allowing calculation of dispersion curves, mode shapes and GW propagation analysis. In this article, the SBFEM is used to analyse wave propagation in a plate consisting of an isotropic aluminium layer bonded as a hybrid to an anisotropic carbon fibre reinforced plastics layer. This hybrid composite corresponds to one of those considered in a Type III composite pressure vessel used for storing gases, e.g., hydrogen in automotive and aerospace applications. The results show that most of the wave energy can be concentrated in a certain layer depending on the mode used, and by that damage present in this layer can be detected. The results obtained help to understand the wave propagation in multi-layered structures and are important for further development of NDT and SHM for engineering structures consisting of multiple layers.


2016 ◽  
Vol 28 (9) ◽  
pp. 1211-1220 ◽  
Author(s):  
Pabitro Ray ◽  
Prabhu Rajagopal ◽  
Balaji Srinivasan ◽  
Krishnan Balasubramaniam

Harnessing of ultrasonic guided waves confined in local features such as bends and welds, known as feature-guided waves, has emerged as a promising technique for non-destructive testing and structural health monitoring of industrial and aerospace structures. This article introduces a fiber Bragg grating based technique which uses feature-guided waves to detect anomalies or defects in plate structures with transverse bends. We are able to obtain good consistency between simulation and experimental results, both in the case of defect-free bent plates and those with transverse defects. Such results establish fiber Bragg gratings as a viable alternative to conventional techniques for structural health monitoring of bent plates.


Author(s):  
Victor Giurgiutiu

Piezoelectric wafer active sensors (PWAS) are lightweight and inexpensive transducers that enable a large class of structural health monitoring (SHM) applications such as: (a) embedded guided wave ultrasonics, i.e., pitch-catch, pulse-echo, phased arrays; (b) high-frequency modal sensing, i.e., the electro-mechanical (E/M) impedance method; and (c) passive detection (acoustic emission and impact detection). The focus of this paper is on the challenges posed by using PWAS transducers in the composite structures as different from the metallic structures on which this methodology was initially developed. After a brief introduction, the paper reviews the PWAS-based SHM principles. It follows with a discussion of guided wave propagation in composites and PWAS tuning effects. Then, it discusses damage modes in composites. Finally, the paper presents some experimental results with damage detection in composite specimens. Hole damage and impact damage were detected using pitch-catch method with tuned guided waves being sent between a transmitter PWAS and a received PWAS. Root mean square deviation (RMSD) damage index (DI) were shown to correlate well with hole size and impact intensity. The paper ends with summary and conclusion; suggestions for further work are also presented.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1445 ◽  
Author(s):  
Sergio Cantero-Chinchilla ◽  
Gerardo Aranguren ◽  
Muhammad Khalid Malik ◽  
Josu Etxaniz ◽  
Federico Martín de la Escalera

The development of reliable structural health monitoring techniques is enabling a healthy transition from preventive to condition-based maintenance, hence leading to safer and more efficient operation of different industries. Ultrasonic guided-wave based beamforming is one of the most promising techniques, which supports the monitoring of large thin-walled structures. However, beamforming has been typically applied to the post-processing stage (also known as virtual or receiver beamforming) because transmission or physical beamforming requires complex hardware configurations. This paper introduces an electronic structural health monitoring system that carries out transmission beamforming experiments by simultaneously emitting and receiving ultrasonic guided-waves using several transducers. An empirical characterization of the transmission beamforming technique for monitoring an aluminum plate is provided in this work. The high signal-to-noise ratio and accurate angular precision of the physical signal obtained in the experiments suggest that transmission beamforming can increase the reliability and robustnessof this monitoring technique for large structures and in real-world noisy environments.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7971
Author(s):  
Gaofeng Sha ◽  
Cliff J. Lissenden

Ultrasonic guided waves provide unique capabilities for the structural health monitoring of plate-like structures. They can detect and locate various types of material degradation through the interaction of shear-horizontal (SH) waves and Lamb waves with the material. Magnetostrictive transducers (MSTs) can be used to generate and receive both SH and Lamb waves and yet their characteristics have not been thoroughly studied, certainly not on par with piezoelectric transducers. A series of multiphysics simulations of the MST/plate system is conducted to investigate the characteristics of MSTs that affect guided wave generation and reception. The results are presented in the vein of showing the flexibility that MSTs provide for guided waves in a diverse range of applications. In addition to studying characteristics of the MST components (i.e., the magnetostrictive layer, meander electric coil, and biased magnetic field), single-sided and double-sided MSTs are compared for preferential wave mode generation. The wave mode control principle is based on the activation line for phase velocity dispersion curves, whose slope is the wavelength, which is dictated by the meander coil spacing. A double-sided MST with in-phase signals preferentially excites symmetric SH and Lamb modes, while a double-sided MST with out-of-phase signals preferentially excites antisymmetric SH and Lamb modes. All attempted single-mode actuations with double-sided MSTs were successful, with the SH3 mode actuated at 922 kHz in a 6-mm-thick plate being the highest frequency. Additionally, the results show that increasing the number of turns in the meander coil enhances the sensitivity of the MST as a receiver and substantially reduces the frequency bandwidth.


Sign in / Sign up

Export Citation Format

Share Document