scholarly journals A bifurcation study to guide the design of a landing gear with a combined uplock/downlock mechanism

Author(s):  
James A. C. Knowles ◽  
Mark H. Lowenberg ◽  
Simon A. Neild ◽  
Bernd Krauskopf

This paper discusses the insights that a bifurcation analysis can provide when designing mechanisms. A model, in the form of a set of coupled steady-state equations, can be derived to describe the mechanism. Solutions to this model can be traced through the mechanism's state versus parameter space via numerical continuation, under the simultaneous variation of one or more parameters. With this approach, crucial features in the response surface, such as bifurcation points, can be identified. By numerically continuing these points in the appropriate parameter space, the resulting bifurcation diagram can be used to guide parameter selection and optimization. In this paper, we demonstrate the potential of this technique by considering an aircraft nose landing gear, with a novel locking strategy that uses a combined uplock/downlock mechanism. The landing gear is locked when in the retracted or deployed states. Transitions between these locked states and the unlocked state (where the landing gear is a mechanism) are shown to depend upon the positions of two fold point bifurcations. By performing a two-parameter continuation, the critical points are traced to identify operational boundaries. Following the variation of the fold points through parameter space, a minimum spring stiffness is identified that enables the landing gear to be locked in the retracted state. The bifurcation analysis also shows that the unlocking of a retracted landing gear should use an unlock force measure, rather than a position indicator, to de-couple the effects of the retraction and locking actuators. Overall, the study demonstrates that bifurcation analysis can enhance the understanding of the influence of design choices over a wide operating range where nonlinearity is significant.

Author(s):  
Shaun Smith ◽  
James Knowles ◽  
Byron Mason

This paper proposes tools from bifurcation theory, specifically numerical continuation, as a complementary method for efficiently mapping the state-parameter space of an internal combustion engine model. Numerical continuation allows a steady-state engine response to be traced directly through the state-parameter space, under the simultaneous variation of one or more model parameters. By applying this approach to two nonlinear engine models (a physics-based model and a data-driven model), this work determines how input parameters ‘throttle position’ and ‘desired load torque’ affect the engine’s dynamics. Performing a bifurcation analysis allows the model’s parameter space to be divided into regions of different qualitative types of the dynamic behaviour, with the identified bifurcations shown to correspond to key physical properties of the system in the physics-based model: minimum throttle angles required for steady-state operation of the engine are indicated by fold bifurcations; regions containing self-sustaining oscillations are bounded by supercritical Hopf bifurcations. The bifurcation analysis of a data-driven engine model shows how numerical continuation could be used to evaluate the efficacy of data-driven models.


2017 ◽  
Vol 27 (01) ◽  
pp. 1750013 ◽  
Author(s):  
Maolin Liao ◽  
Yinao Su ◽  
Yingcao Zhou

A drillbit–rock vibro-impact system with a linear rock contact law is considered in this paper. This system is a simplified model to study the drillbit oscillation in a percussive drilling system. The main purpose of this work is to explore the optimized vibration condition of the drillbit to improve the drilling efficiency in practical drilling applications. In order to eliminate the influences of drilling progression on the dynamic analysis of drillbit oscillation, the drillbit oscillation is separated from its drift via oscillation reconstruction. The obtained bounded mathematical model is analyzed by numerical integration and numerical continuation. Based on the codimension-one bifurcations detected by TC-HAT during one-parameter continuation, the two-parameter bifurcation curves are traced by two-parameter continuation. These explored two-parameter bifurcation curves constitute the parameter boundaries for the period-one one-impact oscillation of drillbit, which is verified as the optimal oscillation with the highest drilling efficiency.


2003 ◽  
Vol 39 (3) ◽  
pp. 1103-1112 ◽  
Author(s):  
Der-Cherng Liaw ◽  
Chau-Chung Song ◽  
Yew-Wen Liang ◽  
Wen-Ching Chung

Author(s):  
Marek Berezowski

AbstractThe work relates to development and presentation a two-parameter continuation method for determining catastrophic sets of stationary states of a tubular chemical reactor with mass recycle. The catastrophic set is a set of extreme points occurring in the bifurcation diagrams of the reactor. There are many large IT systems that use the parametric continuation method. The most popular is AUTO’97. However, its use is sometimes not convenient. The method developed in this work allows to eliminate the necessity to use huge IT systems from the calculations. Unlike these systems, it can be inserted into the program as a short subroutine. In addition, this method eliminates time-consuming iterations from the calculations.


Author(s):  
James Knowles ◽  
Bernd Krauskopf ◽  
Mark Lowenberg ◽  
Simon Neild ◽  
P. Thota

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Michal Marszal ◽  
Krzysztof Jankowski ◽  
Przemyslaw Perlikowski ◽  
Tomasz Kapitaniak

This paper investigates dynamics of double pendulum subjected to vertical parametric kinematic excitation. It includes detailed bifurcation diagrams in two-parameter space (excitation’s frequency and amplitude) for both oscillations and rotations in the domain of periodic solutions.


2018 ◽  
Vol 18 (06) ◽  
pp. 1850082 ◽  
Author(s):  
Lidija Z. Rehlicki ◽  
Marko B. Janev ◽  
Branislava N. Novaković ◽  
Teodor M. Atanacković

In this paper, we analyze the nonlinear equilibrium equation corresponding to the two-parameter bifurcation problem arising in the stability analysis of an elastic simply supported beam on the Winkler type elastic foundation for the case when bimodal buckling occurs. We perform the bifurcation analysis of the nonlinear problem, by using Lyapunov–Schmidt reduction, thus obtaining the number of the nontrivial solutions to the nonlinear problem and qualitatively characterizing the solution patterns. We also give the formulation of the problem and bifurcation analysis from the total energy viewpoint and determine the energy of each bifurcating solution. We assert that the solution with the smallest energy is the one that will be observed in the post-critical state. For specific choice of parameters, the bifurcating solution in the form of the second buckling mode has the smallest total energy. The numerical results illustrating the theory are also provided.


2014 ◽  
Vol 28 (18) ◽  
pp. 1450114 ◽  
Author(s):  
Yanqiu Che ◽  
Huiyan Li ◽  
Chunxiao Han ◽  
Xile Wei ◽  
Bin Deng ◽  
...  

In this paper, the effects of external DC electric fields on the neuro-computational properties are investigated in the context of Morris–Lecar (ML) model with bifurcation analysis. We obtain the detailed bifurcation diagram in two-dimensional parameter space of externally applied DC current and trans-membrane potential induced by external DC electric field. The bifurcation sets partition the two-dimensional parameter space in terms of the qualitatively different behaviors of the ML model. Thus the neuron's information encodes the stimulus information, and vice versa, which is significant in neural control. Furthermore, we identify the electric field as a key parameter to control the transitions among four different excitability and spiking properties, which facilitates the design of electric fields based neuronal modulation method.


Sign in / Sign up

Export Citation Format

Share Document