scholarly journals Non-reciprocal wave propagation in modulated elastic metamaterials

Author(s):  
H. Nassar ◽  
H. Chen ◽  
A. N. Norris ◽  
M. R. Haberman ◽  
G. L. Huang

Time-reversal symmetry for elastic wave propagation breaks down in a resonant mass-in-mass lattice whose inner-stiffness is weakly modulated in space and in time in a wave-like fashion. Specifically, one-way wave transmission, conversion and amplification as well as unidirectional wave blocking are demonstrated analytically through an asymptotic analysis based on coupled mode theory and numerically thanks to a series of simulations in harmonic and transient regimes. High-amplitude modulations are then explored in the homogenization limit where a non-standard effective mass operator is recovered and shown to take negative values over unusually large frequency bands. These modulated metamaterials, which exhibit either non-reciprocal behaviours or non-standard effective mass operators, offer promise for applications in the field of elastic wave control in general and in one-way conversion/amplification in particular.

2021 ◽  
Vol 263 (2) ◽  
pp. 4303-4311
Author(s):  
Edson J.P. de Miranda ◽  
Edilson D. Nobrega ◽  
Leopoldo P.R. de Oliveira ◽  
José M.C. Dos Santos

The wave propagation attenuation in low frequencies by using piezoelectric elastic metamaterials has been developed in recent years. These piezoelectric structures exhibit abnormal properties, different from those found in nature, through the artificial design of the topology or exploring the shunt circuit parameters. In this study, the wave propagation in a 1-D elastic metamaterial rod with periodic arrays of shunted piezo-patches is investigated. This piezoelectric metamaterial rod is capable of filtering the propagation of longitudinal elastic waves over a specified range of frequency, called band gaps. The complex dispersion diagrams are obtained by the extended plane wave expansion (EPWE) and wave finite element (WFE) approaches. The comparison between these methods shows good agreement. The Bragg-type and locally resonant band gaps are opened up. The shunt circuits influence significantly the propagating and the evanescent modes. The results can be used for elastic wave attenuation using piezoelectric periodic structures.


2021 ◽  
Vol 7 ◽  
Author(s):  
Patrick Dorin ◽  
K. W. Wang

Many engineering applications leverage metamaterials to achieve elastic wave control. To enhance the performance and expand the functionalities of elastic waveguides, the concepts of electronic transport in topological insulators have been applied to elastic metamaterials. Initial studies showed that topologically protected elastic wave transmission in mechanical metamaterials could be realized that is immune to backscattering and undesired localization in the presence of defects or disorder. Recent studies have developed tunable topological elastic metamaterials to maximize performance in the presence of varying external conditions, adapt to changing operating requirements, and enable new functionalities such as a programmable wave path. However, a challenge remains to achieve a tunable topological metamaterial that is comprehensively adaptable in both the frequency and spatial domains and is effective over a broad frequency bandwidth that includes a subwavelength regime. To advance the state of the art, this research presents a piezoelectric metamaterial with the capability to concurrently tailor the frequency, path, and mode shape of topological waves using resonant circuitry. In the research presented in this manuscript, the plane wave expansion method is used to detect a frequency tunable subwavelength Dirac point in the band structure of the periodic unit cell and discover an operating region over which topological wave propagation can exist. Dispersion analyses for a finite strip illuminate how circuit parameters can be utilized to adjust mode shapes corresponding to topological edge states. A further evaluation provides insight into how increased electromechanical coupling and lattice reconfiguration can be exploited to enhance the frequency range for topological wave propagation, increase achievable mode localization, and attain additional edge states. Topological guided wave propagation that is subwavelength in nature and adaptive in path, localization, and frequency is illustrated in numerical simulations of thin plate structures. Outcomes from the presented work indicate that the easily integrable and comprehensively tunable proposed metamaterial could be employed in applications requiring a multitude of functions over a broad frequency bandwidth.


2019 ◽  
Vol 52 (39) ◽  
pp. 395301 ◽  
Author(s):  
Yongjun Tian ◽  
Jiu Hui Wu ◽  
Hongliang Li ◽  
Cansong Gu ◽  
Zhengrui Yang ◽  
...  

2017 ◽  
Author(s):  
◽  
Yangyang Chen

Over the past two decades, an extensive research effort has been devoted to elastic metamaterials, structured artificial materials at subwavelength scales, for elastic wave manipulations in solids. Due to the extreme values of material parameters, negative and/or positive, they achieved, the applications can range from wave and/or vibration attenuations, wave guiding and imaging, enhanced sensing, to invisible cloaking. However, conventional passive metamaterials have limitations, i.e. they can only be operated in narrow frequency regions and their functions are usually locked into space or with minor tunabilities once fabricated, lacking real time reconfigurabilities. Those limitations strongly hinder them from practical usages. With the rapid development of smart materials and structures, more and more intelligent elements are being introduced into wave propagation, vibration and sound control systems. The piezoelectric shunting technique is one well known method that receives considerable attention. In this dissertation, by leveraging the circuit control concept, both analog and digital, we propose some circuit controlled active/adaptive/hybrid/programmable metamaterials and metasurfaces for unprecedent elastic wave manipulations. Analytical, numerically and experimentally approaches are combined throughout the dissertation to illustrate design concepts, characterize wave propagation properties, and valid the designs. Specifically, active elastic metamaterials with tunable stiffness in local resonators are first designed for tunable wave and/or vibration mitigations. We then extend this concept to achieve super broadband wave attenuations with frequency-dependent stiffness elements. By introducing the variable stiffness elements to the host medium, a hybrid metamaterial is developed for switched ON/OFF wave propagations and broadband negative refractions. Based on a developed approximate transformation method, an active metamaterial is designed and placed on a plate to achieve spatially varying effective mass densities for broadband elastic trajectory control. Finally, a programmable metasurface with ultrathin-thickness is demonstrated for broadband, real-time and multifunctional wavefront manipulations in a plate. The active, adaptive, hybrid, and programmable elastic metamaterials and/or metasurfaces are still in their infant stages. The examples presented in the dissertation are transformable to different length and time scales and could serve as efficient and powerful tools in exploring some unconventional wave phenomenon in solid structures, i.e. by using concepts in quantum mechanics, where passive approaches are significantly limited. The designs could also immediately open new possibilities in elastic wave control devices including, but not limited to structural health monitoring, stealth technology, active noise control, as well as medical instrumentation and imaging.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 426
Author(s):  
Yang Liu ◽  
Pengyun Yan ◽  
Feng Liu ◽  
Aoqun Jian ◽  
Shengbo Sang

Inspired by exceptional point (EP) sensing in non-Hermitian systems, in this work, a label-free biosensor for detecting low-concentration analytes is proposed, via a special multilayer structure: a resonant optical tunneling resonator. Due to the square root topology near the exceptional point, a recognized target analyte perturbs the system deviated from the exceptional point, leading to resolvable modes splitting in the transmission spectrum. The performance of the designed sensor is analyzed by the coupled-mode theory and transfer matrix method, separately. Here, the simulation results demonstrate that the obtained sensitivity is 17,120 nm/imaginary part unit of refractive index (IP) and the theoretical detection limit is 4.2 × 10−8 IP (regarding carcinoembryonic antigen (CEA), the minimum detection value is 1.78 ng). Instead of the typical diffusion manner, the liquid sample is loaded by convection, which can considerably improve the efficiency of sample capture and shorten the response time of the sensor. The sketched sensor may find potential application in the fields of biomedical detection, environment protection, and drinking water safety.


Sign in / Sign up

Export Citation Format

Share Document