scholarly journals Chiral mode transfer of symmetry-broken states in anti-parity-time-symmetric mechanical system

Author(s):  
Linlin Geng ◽  
Weixuan Zhang ◽  
Xiangdong Zhang ◽  
Xiaoming Zhou

Non-Hermitian systems with parity-time (PT) symmetry reveal rich physics beyond the Hermitian regime. As the counterpart of conventional PT symmetry, anti-parity-time (APT) symmetry may lead to new insights and applications. Complementary to PT-symmetric systems, non-reciprocal and chiral mode switching for symmetry-broken modes have been reported in optics with an exceptional point dynamically encircled in the parameter space of an APT-symmetric system. However, it has remained an open question whether and how the APT-symmetry-induced chiral mode transfer could be realized in mechanical systems. This paper investigates the implementation of APT symmetry in a three-element mass–spring system. The dynamic encircling of an APT-symmetric exceptional point has been implemented using dynamic-modulation mechanisms with time-driven stiffness. It is found that the dynamic encircling of an exceptional point in an APT-symmetric system with the starting point near the symmetry-broken phase leads to chiral mode switching. These findings may provide new opportunities for unprecedented wave manipulation in mechanical systems.

Author(s):  
Linlin Geng ◽  
Weixuan Zhang ◽  
Xiangdong Zhang ◽  
Xiaoming Zhou

Exceptional points are special degeneracies occurring in non-Hermitian systems at which both eigenfrequencies and eigenmodes coalesce simultaneously. Fascinating phenomena, including topological, non-reciprocal and chiral energy transfer between normal modes, have been envisioned in optical and photonic systems with the exceptional point dynamically encircled in the parameter space. However, it has remained an open question of whether and how topological mode switching relying on exceptional points could be achieved in mechanical systems. The present paper studies a two-mode mechanical system with an exceptional point and implements the dynamic encircling of such a point using dynamic modulation mechanisms with time-driven elasticity and viscosity. Topological mode switching with robustness against the input state and loop trajectories has been demonstrated numerically. It is found that the dynamical encircling of an exceptional point with the starting point near the symmetric phase leads to chiral mode transfer controlled mainly by the encircling direction, while non-chiral dynamics is observed for the starting point near the broken phase. Analyses also show that minor energy input is required in the process of encircling the exceptional point, demonstrating the intrinsically motivated behaviour of topological mode switching.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Xu-Lin Zhang ◽  
Tianshu Jiang ◽  
C. T. Chan

Abstract Dynamically encircling an exceptional point (EP) in parity-time (PT) symmetric waveguide systems exhibits interesting chiral dynamics that can be applied to asymmetric mode switching for symmetric and anti-symmetric modes. The counterpart symmetry-broken modes (i.e., each eigenmode is localized in one waveguide only), which are more useful for applications such as on-chip optical signal processing, exhibit only non-chiral dynamics and therefore cannot be used for asymmetric mode switching. Here, we solve this problem by resorting to anti-parity-time (anti-PT) symmetric systems and utilizing their unique topological structure, which is very different from that of PT-symmetric systems. We find that the dynamical encircling of an EP in anti-PT-symmetric systems with the starting point in the PT-broken phase results in chiral dynamics. As a result, symmetry-broken modes can be used for asymmetric mode switching, which is a phenomenon and application unique to anti-PT-symmetric systems. We perform experiments to demonstrate the new wave-manipulation scheme, which may pave the way towards designing on-chip optical systems with novel functionalities.


Author(s):  
Chao Zheng

Abstract Parity-time-reversal (PT) symmetric quantum mechanics promotes the increasing research interest of non-Hermitian (NH) systems for the theoretical value, novel properties, and links to open and dissipative systems in various areas. Recently, anti-PT-symmetric systems and its featured properties start to be investigated. In this work, we develop the PT- and anti-PT symmetry to PT-arbitrary-phase symmetry (or PT-φ symmetry) for the first time, being analogous to bosons, fermions and anyons. It can also be seen as a complex extension of the PT-symmetry, unifying the PT and anti-PT symmetries and having properties intermediate between them. Many of the established concepts and mathematics in the PT-symmetric system are still compatible. We mainly investigate quantum simulation of this novel NH-system of two-dimensions in detail and discuss for higher-dimensional cases in general using the linear combinations of unitaries in the scheme of duality quantum computing, enabling implementations and experimental investigations of novel properties on both small quantum devices and near-term quantum computers.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xi-guang Wang ◽  
Guang-hua Guo ◽  
Jamal Berakdar

Abstract Tuning the magneto optical response and magnetic dynamics are key elements in designing magnetic metamaterials and devices. This theoretical study uncovers a highly effective way of controlling the magnetic permeability via shaping the magnonic properties of coupled magnetic waveguides separated by a nonmagnetic spacer with strong spin–orbit interaction (SOI). We demonstrate how a spacer charge current leads to enhancement of magnetic damping in one waveguide and a decrease in the other, constituting a bias-controlled magnetic parity–time (PT) symmetric system at the verge of the exceptional point where magnetic gains/losses are balanced. We find phenomena inherent to PT-symmetric systems and SOI-driven interfacial structures, including field-controlled magnon power oscillations, nonreciprocal propagation, magnon trapping and enhancement as well as an increased sensitivity to perturbations and abrupt spin reversal. The results point to a new route for designing magnonic waveguides and microstructures with enhanced magnetic response.


NANO ◽  
2015 ◽  
Vol 10 (02) ◽  
pp. 1550024 ◽  
Author(s):  
S. Kamal Jalali ◽  
M. Hassan Naei ◽  
Nicola Maria Pugno

Application of single layered graphene sheets (SLGSs) as resonant sensors in detection of ultra-fine nanoparticles (NPs) is investigated via molecular dynamics (MD) and nonlocal elasticity approaches. To take into consideration the effect of geometric nonlinearity, nonlocality and atomic interactions between SLGSs and NPs, a nonlinear nonlocal plate model carrying an attached mass-spring system is introduced and a combination of pseudo-spectral (PS) and integral quadrature (IQ) methods is proposed to numerically determine the frequency shifts caused by the attached metal NPs. In MD simulations, interactions between carbon–carbon, metal–metal and metal–carbon atoms are described by adaptive intermolecular reactive empirical bond order (AIREBO) potential, embedded atom method (EAM), and Lennard–Jones (L–J) potential, respectively. Nonlocal small-scale parameter is calibrated by matching frequency shifts obtained by nonlocal and MD simulation approaches with same vibration amplitude. The influence of nonlinearity, nonlocality and distribution of attached NPs on frequency shifts and sensitivity of the SLGS sensors are discussed in detail.


2014 ◽  
Vol 983 ◽  
pp. 420-423
Author(s):  
Sheng Guo Zhang ◽  
Xiao Ping Dang

This paper aims at directly modeling the transfer functions of mass-spring-damper systems. Using complex stiffness of mass, spring, and damper elements and equivalent complex stiffness of these elements in series and/or in parallel, the transfer functions of the mass-spring-damper systems are modeled quickly. This is very convenient to the modeling of the complicated mechanical systems.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Venkata K. Yadalam ◽  
B. F. Feeny

A method of modal analysis by a mass-weighted proper orthogonal decomposition for multi-degree-of-freedom and distributed-parameter systems of arbitrary mass distribution is outlined. The method involves reduced-order modeling of the system mass distribution so that the discretized mass matrix dimension matches the number of sensed quantities, and hence the dimension of the response ensemble and correlation matrix. In this case, the linear interpolation of unsensed displacements is used to reduce the size of the mass matrix. The idea is applied to the modal identification of a mass-spring system and an exponential rod.


2021 ◽  
Author(s):  
Franco Fassio

Food, the basic connecting unit of all the UN's Sustainable Development Goals, plays a crucial role in the ecological transition towards a circular economic paradigm. This paper takes scientific considerations as a starting point in order to contribute to the definition of a theoretical-operational framework in which to grow the Circular Economy for Food. This is a still-open question in a sector of the circular economy that is emerging as vital to sustainable development. The 3 C's of Capital, Cyclicality and Co-evolution offer a systemic, holistic vision of the food system's role. Within this conceptual framework, the designers can find the main boundaries of the system, within which to express their creativity. The aim must be to avoid damaging relationships with the best supplier of raw material known to humanity (Nature), respecting planetary boundaries and at the same time offering a fair space to civil society.


2013 ◽  
Vol 14 (5) ◽  
pp. 1228-1251 ◽  
Author(s):  
Yan Li ◽  
I-Liang Chern ◽  
Joung-Dong Kim ◽  
Xiaolin Li

AbstractWe use front tracking data structures and functions to model the dynamic evolution of fabric surface. We represent the fabric surface by a triangulated mesh with preset equilibrium side length. The stretching and wrinkling of the surface are modeled by the mass-spring system. The external driving force is added to the fabric motion through the “Impulse method” which computes the velocity of the point mass by superposition of momentum. The mass-spring system is a nonlinear ODE system. Added by the numerical and computational analysis, we show that the spring system has an upper bound of the eigen frequency. We analyzed the system by considering two spring models and we proved in one case that all eigenvalues are imaginary and there exists an upper bound for the eigen-frequency This upper bound plays an important role in determining the numerical stability and accuracy of the ODE system. Based on this analysis, we analyzed the numerical accuracy and stability of the nonlinear spring mass system for fabric surface and its tangential and normal motion. We used the fourth order Runge-Kutta method to solve the ODE system and showed that the time step is linearly dependent on the mesh size for the system.


2018 ◽  
Vol 7 (3) ◽  
pp. 31
Author(s):  
Rosa Virginia Hernández ◽  
Luis Fernando Mariño ◽  
Mawency Vergel

En este artículo se presenta la caracterización del conocimiento semántico evidenciado por un grupo de estudiantes en la representación externa a problemas de ecuaciones diferenciales lineales de segundo orden como modelos matemáticos. El trabajo fue cuantitativo de tipo exploratorio y descriptivo utilizando un cuestionario en la recolección de información. El soporte teórico que dio sentido al estudio fue el modelo de dos etapas propuesto por Mayer R. para la resolución de problemas matemáticos, el ciclo de modelación bajo la perspectiva cognitiva según Borromeo Ferri y la teoría de las representaciones de Goldin y Kaput. La investigación se centró específicamente en la fase de representación del modelo. Entre los principales hallazgos se destaca que cada participante hace su propia representación externa a conceptos como: sistema masa-resorte, peso, masa, punto de equilibrio, constante de elasticidad, punto de equilibrio, ley de Hooke, fuerza amortiguadora, fuerza externa, ley de Newton, entre otros. Se evidencian también dificultades en el tránsito del lenguaje natural al lenguaje matemático y la representación externa de cada una de los signos, símbolos o expresiones matemáticas inmersas en el problema de palabra, debido a que el resolutor tiene que construir un modelo mental de la situación real y plasmarlo en un modelo matemático. Lo anterior pone de manifiesto la importancia que tiene el conocimiento semántico en la etapa de traducción cuando se intentan resolver problemas como situaciones reales a modelar.Palabras clave: resolución de problemas, ciclos de modelación, problemas de palabra, representaciones externas, conocimiento extra matemático, modelación matemática. AbstractThis article presents the characterization of the semantic knowledge evidenced by a group of students in the external representation to problems of second order linear differential equations as mathematical models. The work was quantitative exploratory and descriptive using a questionnaire in the collection of information. The theoretical support that gave meaning to the study was the two-stage model proposed by Mayer R. for solving mathematical problems, the modeling cycle under the cognitive perspective according to Borromeo Ferri and the theory of representations of Goldin and Kaput. The research focused specifically on the representation phase of the model. Among the main findings is that each participant makes his own external representation to concepts such as: mass-spring system, weight, mass, equilibrium point, constant of elasticity, equilibrium point, Hooke's law, damping force, external force, law of Newton, among others. Difficulties are also evident in the transition from natural language to mathematical language and the external representation of each of the signs, symbols or mathematical expressions involved in the word problem, because the resolver has to construct a mental model of the real situation and translate it into a mathematical model. This demonstrates the importance of semantic knowledge in the translation stage when trying to solve problems as real situations to be modeledKeywords: problem solving, modeling cycles, word problems, external representations, extra mathematical knowledge, mathematical modeling.ResumoEste artigo apresenta a caracterização do conhecimento semântico evidenciado por um grupo de estudantes na representação externa a problemas de equações diferenciais lineares de segunda ordem como modelos matemáticos. O trabalho foi quantitativo exploratório e descritivo usando um questionário na coleta de informações. O suporte teórico que deu sentido ao estudo foi o modelo de dois estágios proposto por Mayer R. para resolver problemas matemáticos, o ciclo de modelagem sob a perspectiva cognitiva de acordo com Borromeo Ferri e a teoria das representações de Goldin e Kaput. A pesquisa focalizou especificamente a fase de representação do modelo. Entre os principais achados, cada participante faz sua própria representação externa para conceitos como: sistema de massa-mola, peso, massa, ponto de equilíbrio, constante de elasticidade, ponto de equilíbrio, lei de Hooke, força de amortecimento, força externa, lei de Newton, entre outros. As dificuldades também são evidentes na transição da linguagem natural para a linguagem matemática e a representação externa de cada um dos signos, símbolos ou expressões matemáticas envolvidas na palavra problema, porque o resolvedor tem que construir um modelo mental da situação real e traduzi-lo para um modelo matemático. Isso demonstra a importância do conhecimento semântico na fase de tradução ao tentar resolver problemas como situações reais a serem modeladas. ______________________________________________________ Palavras-chave: resolução de problemas, ciclos de modelagem, problemas de palavra, representação externa, conhecimento extra matemático, modelagem matemática


Sign in / Sign up

Export Citation Format

Share Document