Active site complementation in engineered hetero-dimers of Escherichia coli glutathione reductase created in vivo

1990 ◽  
Vol 242 (1305) ◽  
pp. 217-224 ◽  
1991 ◽  
pp. 525-528
Author(s):  
M. P. Deonarain ◽  
N. S. Scrutton ◽  
A. Berry ◽  
R. N. Perham

2000 ◽  
Vol 352 (3) ◽  
pp. 717-724 ◽  
Author(s):  
Ying-Ying CHANG ◽  
John E. CRONAN

Escherichia coli pyruvate oxidase (PoxB), a lipid-activated homotetrameric enzyme, is active on both pyruvate and 2-oxobutanoate (‘α-ketobutyrate’), although pyruvate is the favoured substrate. By localized random mutagenesis of residues chosen on the basis of a modelled active site, we obtained several PoxB enzymes that had a markedly decreased activity with the natural substrate, pyruvate, but retained full activity with 2-oxobutanoate. In each of these mutant proteins Val-380had been replaced with a smaller residue, namely alanine, glycine or serine. One of these, PoxB V380A/L253F, was shown to lack detectable pyruvate oxidase activity in vivo; this protein was purified, studied and found to have a 6-fold increase in Km for pyruvate and a 10-fold lower Vmax with this substrate. In contrast, the mutant had essentially normal kinetic constants with 2-oxobutanoate. The altered substrate specificity was reflected in a decreased rate of pyruvate binding to the latent conformer of the mutant protein owing to the V380A mutation. The L253F mutation alone had no effect on PoxB activity, although it increased the activity of proteins carrying substitutions at residue 380, as it did that of the wild-type protein. The properties of the V380A/L253F protein provide new insights into the mode of substrate binding and the unusual activation properties of this enzyme.


2019 ◽  
Vol 48 (2) ◽  
pp. 847-861 ◽  
Author(s):  
Nida Ali ◽  
Jayaraman Gowrishankar

Abstract RNase E is a 472-kDa homo-tetrameric essential endoribonuclease involved in RNA processing and turnover in Escherichia coli. In its N-terminal half (NTH) is the catalytic active site, as also a substrate 5′-sensor pocket that renders enzyme activity maximal on 5′-monophosphorylated RNAs. The protein's non-catalytic C-terminal half (CTH) harbours RNA-binding motifs and serves as scaffold for a multiprotein degradosome complex, but is dispensable for viability. Here, we provide evidence that a full-length hetero-tetramer, composed of a mixture of wild-type and (recessive lethal) active-site mutant subunits, exhibits identical activity in vivo as the wild-type homo-tetramer itself (‘recessive resurrection’). When all of the cognate polypeptides lacked the CTH, the active-site mutant subunits were dominant negative. A pair of C-terminally truncated polypeptides, which were individually inactive because of additional mutations in their active site and 5′-sensor pocket respectively, exhibited catalytic function in combination, both in vivo and in vitro (i.e. intragenic or allelic complementation). Our results indicate that adjacent subunits within an oligomer are separately responsible for 5′-sensing and cleavage, and that RNA binding facilitates oligomerization. We propose also that the CTH mediates a rate-determining initial step for enzyme function, which is likely the binding and channelling of substrate for NTH’s endonucleolytic action.


2003 ◽  
Vol 185 (4) ◽  
pp. 1167-1173 ◽  
Author(s):  
Monica Ekberg ◽  
Pernilla Birgander ◽  
Britt-Marie Sjöberg

ABSTRACT Ribonucleotide reductase (RNR) catalyzes the essential production of deoxyribonucleotides in all living cells. In this study we have established a sensitive in vivo assay to study the activity of RNR in aerobic Escherichia coli cells. The method is based on the complementation of a chromosomally encoded nonfunctional RNR with plasmid-encoded RNR. This assay can be used to determine in vivo activity of RNR mutants with activities beyond the detection limits of traditional in vitro assays. E. coli RNR is composed of two homodimeric proteins, R1 and R2. The R2 protein contains a stable tyrosyl radical essential for the catalysis that takes place at the R1 active site. The three-dimensional structures of both proteins, phylogenetic studies, and site-directed mutagenesis experiments show that the radical is transferred from the R2 protein to the active site in the R1 protein via a radical transfer pathway composed of at least nine conserved amino acid residues. Using the new assay we determined the in vivo activity of mutants affecting the radical transfer pathway in RNR and identified some residual radical transfer activity in two mutant R2 constructs (D237N and W48Y) that had previously been classified as negative for enzyme activity. In addition, we show that the R2 mutant Y356W is completely inactive, in sharp contrast to what has previously been observed for the corresponding mutation in the mouse R2 enzyme.


2004 ◽  
Vol 186 (20) ◽  
pp. 6775-6781 ◽  
Author(s):  
Liat Fux ◽  
Anat Nussbaum-Shochat ◽  
Livnat Lopian ◽  
Orna Amster-Choder

ABSTRACT The BglG protein positively regulates expression of the bgl operon in Escherichia coli by binding as a dimer to the bgl transcript and preventing premature termination of transcription in the presence of β-glucosides. BglG activity is negatively controlled by BglF, the β-glucoside phosphotransferase, which reversibly phosphorylates BglG according to β-glucoside availability, thus modulating its dimeric state. BglG consists of an RNA-binding domain and two homologous domains, PRD1 and PRD2. Based on structural studies of a BglG homologue, the two PRDs fold similarly, and the interactions within the dimer are PRD1-PRD1 and PRD2-PRD2. We have recently shown that the affinity between PRD1 and PRD2 of BglG is high, and a fraction of the BglG monomers folds in the cell into a compact conformation, in which PRD1 and PRD2 are in close proximity. We show here that both BglG forms, the compact and noncompact, bind to the active site-containing domain of BglF, IIBbgl, in vitro. The interaction of BglG with IIBbgl or BglF is mediated by PRD2. Both BglG forms are detected as phosphorylated proteins after in vitro phosphorylation with IIBbgl and are dephosphorylated by BglF in vitro in the presence of β-glucosides. Nevertheless, genetic evidence indicates that the interaction of IIBbgl and BglF with the compact form is seemingly less favorable. Using in vivo cross-linking, we show that BglF enhances folding of BglG into a compact conformation, whereas the addition of β-glucosides reduces the amount of this form. Based on these results we suggest a model for the modulation of BglG conformation and activity by BglF.


Author(s):  
Yasushi Daimon ◽  
Shin-ichiro Narita ◽  
Ryoji Miyazaki ◽  
Yohei Hizukuri ◽  
Hiroyuki Mori ◽  
...  

AbstractEscherichia coli periplasmic zinc-metallopeptidase BepA normally functions by promoting maturation of LptD, a β-barrel outer membrane protein involved in biogenesis of lipopolysaccharides, but degrades it when its membrane assembly is hampered. These processes should be properly regulated to ensure normal biogenesis of LptD, but the underlying mechanism of regulation, however, remains to be elucidated. A recently solved BepA structure has revealed unique features, in particular the active site is buried in the protease domain and conceivably inaccessible for substrate degradation. Additionally, the His-246 residue in the loop region containing helix α9 (α9/H246 loop), which has a potential flexibility and covers the active site, coordinates the zinc ion as the fourth ligand to exclude a catalytic water molecule, thereby suggesting that the crystal structure of BepA represents a latent form. To examine the roles of the α9/H246 loop in the regulation of the BepA activity, we constructed BepA mutants with a His-246 mutation or a deletion of the α9/H246 loop and analyzed their activities in vivo and in vitro. These mutants exhibited an elevated protease activity and, unlike the wild-type BepA, degraded LptD that is in the normal assembly pathway. In contrast, tethering of the α9/H246 loop repressed the LptD degradation, which suggests that the flexibility of this loop is important to the exhibition of the protease activity. Based on these results, we propose that the α9/H246 loop undergoes a reversible structural change that enables His-246-mediated switching (histidine switch) of its protease activity, which is important for regulated degradation of stalled/misassembled LptD.


1998 ◽  
Vol 180 (7) ◽  
pp. 1947-1950 ◽  
Author(s):  
Renata A. Fabianek ◽  
Hauke Hennecke ◽  
Linda Thöny-Meyer

ABSTRACT A new member of the family of periplasmic protein thiol:disulfide oxidoreductases, CcmG (also called DsbE), was characterized with regard to its role in cytochrome c maturation in Escherichia coli. The CcmG protein was shown to be membrane bound, facing the periplasm with its C-terminal, hydrophilic domain. A chromosomal, nonpolar in-frame deletion in ccmG resulted in the complete absence of all c-type cytochromes. Replacement of either one or both of the two cysteine residues of the predicted active site in CcmG (WCPTC) led to low but detectable levels ofBradyrhizobium japonicum holocytochromec 550 expressed in E. coli. This defect, but not that of the ccmG null mutant, could be complemented by adding low-molecular-weight thiol compounds to growing cells, which is in agreement with a reducing function for CcmG.


2009 ◽  
Vol 87 (2) ◽  
pp. 445-457 ◽  
Author(s):  
Ali Farsi ◽  
Pratik H. Lodha ◽  
Jennifer E. Skanes ◽  
Heidi Los ◽  
Navya Kalidindi ◽  
...  

Cystathionine γ-synthase (CGS) and cystathionine β-lyase (CBL), which comprise the transsulfuration pathway of bacteria and plants, and cystathionine γ-lyase (CGL), the second enzyme of the fungal and animal reverse transsulfuration pathway, share ∼30% sequence identity and are almost indistinguishable in overall structure. One difference between the active site of Escherichia coli CBL and those of E. coli CGS and Saccharomyces cerevisiae CGL is the replacement of a pair of aromatic residues, F55 and Y338, of the former by acidic residues in CGS (D45 and E325) and CGL (E48 and E333). A series of interconverting, site-directed mutants of these 2 residues was constructed in CBL (F55D, Y338E, F55D/Y338E), CGS (D45F, E325Y and D45F/E325Y) and CGL (E48A,D and E333A,D,Y) to probe the role of these residues as determinants of reaction specificity. Mutation of either position results in a reduction in catalytic efficiency, as exemplified by the 160-fold reduction in the kcat/Kml-Cys of eCGS-D45F and the 2850- and 30-fold reductions in the kcat/Kml-Cth of the eCBL-Y338E and the yCGL-E333A,Y mutants, respectively. However, the in vivo reaction specificity of the mutants was not altered, compared with the corresponding wild-type enzymes. The ΔmetB and ΔmetC strains, the optimized CBL and CGL assay conditions, and the efficient expression and affinity purification systems described provide the necessary tools to enable the continued exploration of the determinants of reaction specificity in the enzymes of the transsulfuration pathways.


Sign in / Sign up

Export Citation Format

Share Document