scholarly journals Sequence-based evidence for major histocompatibility complex-disassortative mating in a colonial seabird

2011 ◽  
Vol 279 (1726) ◽  
pp. 153-162 ◽  
Author(s):  
Frans A. Juola ◽  
Donald C. Dearborn

The major histocompatibility complex (MHC) is a polymorphic gene family associated with immune defence, and it can play a role in mate choice. Under the genetic compatibility hypothesis, females choose mates that differ genetically from their own MHC genotypes, avoiding inbreeding and/or enhancing the immunocompetence of their offspring. We tested this hypothesis of disassortative mating based on MHC genotypes in a population of great frigatebirds ( Fregata minor ) by sequencing the second exon of MHC class II B. Extensive haploid cloning yielded two to four alleles per individual, suggesting the amplification of two genes. MHC similarity between mates was not significantly different between pairs that did ( n = 4) or did not ( n = 42) exhibit extra-pair paternity. Comparing all 46 mated pairs to a distribution based on randomized re-pairings, we observed the following (i): no evidence for mate choice based on maximal or intermediate levels of MHC allele sharing (ii), significantly disassortative mating based on similarity of MHC amino acid sequences, and (iii) no evidence for mate choice based on microsatellite alleles, as measured by either allele sharing or similarity in allele size. This suggests that females choose mates that differ genetically from themselves at MHC loci, but not as an inbreeding-avoidance mechanism.

2012 ◽  
Vol 279 (1746) ◽  
pp. 4457-4463 ◽  
Author(s):  
Maria Strandh ◽  
Helena Westerdahl ◽  
Mikael Pontarp ◽  
Björn Canbäck ◽  
Marie-Pierre Dubois ◽  
...  

Mate choice for major histocompatibility complex (MHC) compatibility has been found in several taxa, although rarely in birds. MHC is a crucial component in adaptive immunity and by choosing an MHC-dissimilar partner, heterozygosity and potentially broad pathogen resistance is maximized in the offspring. The MHC genotype influences odour cues and preferences in mammals and fish and hence olfactory-based mate choice can occur. We tested whether blue petrels, Halobaena caerulea , choose partners based on MHC compatibility. This bird is long-lived, monogamous and can discriminate between individual odours using olfaction, which makes it exceptionally well suited for this analysis. We screened MHC class I and II B alleles in blue petrels using 454-pyrosequencing and quantified the phylogenetic, functional and allele-sharing similarity between individuals. Partners were functionally more dissimilar at the MHC class II B loci than expected from random mating ( p = 0.033), whereas there was no such difference at the MHC class I loci. Phylogenetic and non-sequence-based MHC allele-sharing measures detected no MHC dissimilarity between partners for either MHC class I or II B. Our study provides evidence of mate choice for MHC compatibility in a bird with a high dependency on odour cues, suggesting that MHC odour-mediated mate choice occurs in birds.


Cells ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 257 ◽  
Author(s):  
Ying Zhu ◽  
Qiu-Hong Wan ◽  
He-Min Zhang ◽  
Sheng-Guo Fang

Few major histocompatibility complex (MHC)-based mate choice studies include all MHC genes at the inter-individual, sperm-egg, and mother-fetus recognition levels. We tested three hypotheses of female mate choice in a 17-year study of the giant panda (Ailuropoda melanoleuca) while using ten functional MHC loci (four MHC class I loci: Aime-C, Aime-F, Aime-I, and Aime-L; six MHC class II loci: Aime-DRA, Aime-DRB3, Aime-DQA1, Aime-DQA2, Aime-DQB1, and Aime-DQB2); five super haplotypes (SuHa, SuHaI, SuHaII, DQ, and DR); and, seven microsatellites. We found female choice for heterozygosity at Aime-C, Aime-I, and DQ and for disassortative mate choice at Aime-C, DQ, and DR at the inter-individual recognition level. High mating success occurred in MHC-dissimilar mating pairs. No significant results were found based on any microsatellite parameters, suggesting that MHCs were the mate choice target and there were no signs of inbreeding avoidance. Our results indicate Aime-DQA1- and Aime-DQA2-associated disassortative selection at the sperm-egg recognition level and a possible Aime-C- and Aime-I-associated assortative maternal immune tolerance mechanism. The MHC genes were of differential importance at the different recognition levels, so all of the functional MHC genes should be included when studying MHC-dependent reproductive mechanisms.


1993 ◽  
Vol 177 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P Romagnoli ◽  
C Layet ◽  
J Yewdell ◽  
O Bakke ◽  
R N Germain

Invariant chain (Ii), which associates with major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, contains a targeting signal for transport to intracellular vesicles in the endocytic pathway. The characteristics of the target vesicles and the relationship between Ii structure and class II localization in distinct endosomal subcompartments have not been well defined. We demonstrate here that in transiently transfected COS cells expressing high levels of the p31 or p41 forms of Ii, uncleaved Ii is transported to and accumulates in transferrin-accessible (early) endosomes. Coexpressed MHC class II is also found in this same compartment. These early endosomes show altered morphology and a slower rate of content movement to later parts of the endocytic pathway. At more moderate levels of Ii expression, or after removal of a highly conserved region in the cytoplasmic tail of Ii, coexpressed class II molecules are found primarily in vesicles with the characteristics of late endosomes/prelysosomes. The Ii chains in these late endocytic vesicles have undergone proteolytic cleavage in the lumenal region postulated to control MHC class II peptide binding. These data indicate that the association of class II with Ii results in initial movement to early endosomes. At high levels of Ii expression, egress to later endocytic compartments is delayed and class II-Ii complexes accumulate together with endocytosed material. At lower levels of Ii expression, class II-Ii complexes are found primarily in late endosomes/prelysosomes. These data provide evidence that the route of class II transport to the site of antigen processing and loading involves movement through early endosomes to late endosomes/prelysosomes. Our results also reveal an unexpected ability of intact Ii to modify the structure and function of the early endosomal compartment, which may play a role in regulating this processing pathway.


2003 ◽  
Vol 14 (8) ◽  
pp. 3378-3388 ◽  
Author(s):  
Nicole N. van der Wel ◽  
Masahiko Sugita ◽  
Donna M. Fluitsma ◽  
Xaiochun Cao ◽  
Gerty Schreibelt ◽  
...  

The maturation of dendritic cells is accompanied by the redistribution of major histocompatibility complex (MHC) class II molecules from the lysosomal MHC class II compartment to the plasma membrane to mediate presentation of peptide antigens. Besides MHC molecules, dendritic cells also express CD1 molecules that mediate presentation of lipid antigens. Herein, we show that in human monocyte-derived dendritic cells, unlike MHC class II, the steady-state distribution of lysosomal CD1b and CD1c isoforms was unperturbed in response to lipopolysaccharide-induced maturation. However, the lysosomes in these cells underwent a dramatic reorganization into electron dense tubules with altered lysosomal protein composition. These structures matured into novel and morphologically unique compartments, here termed mature dendritic cell lysosomes (MDL). Furthermore, we show that upon activation mature dendritic cells do not lose their ability of efficient clathrin-mediated endocytosis as demonstrated for CD1b and transferrin receptor molecules. Thus, the constitutive endocytosis of CD1b molecules and the differential sorting of MHC class II from lysosomes separate peptide- and lipid antigen-presenting molecules during dendritic cell maturation.


2008 ◽  
Vol 28 (16) ◽  
pp. 5014-5026 ◽  
Author(s):  
Lei Jin ◽  
Paul M. Waterman ◽  
Karen R. Jonscher ◽  
Cindy M. Short ◽  
Nichole A. Reisdorph ◽  
...  

ABSTRACT Although the best-defined function of type II major histocompatibility complex (MHC-II) is presentation of antigenic peptides to T lymphocytes, these molecules can also transduce signals leading alternatively to cell activation or apoptotic death. MHC-II is a heterodimer of two transmembrane proteins, each containing a short cytoplasmic tail that is dispensable for transduction of death signals. This suggests the function of an undefined MHC-II-associated transducer in signaling the death response. Here we describe a novel plasma membrane tetraspanner (MPYS) that is associated with MHC-II and mediates its transduction of death signals. MPYS is unusual among tetraspanners in containing an extended C-terminal cytoplasmic tail (∼140 amino acids) with multiple embedded signaling motifs. MPYS is tyrosine phosphorylated upon MHC-II aggregation and associates with inositol lipid and tyrosine phosphatases. Finally, MHC class II-mediated cell death signaling requires MPYS-dependent activation of the extracellular signal-regulated kinase signaling pathway.


1992 ◽  
Vol 175 (2) ◽  
pp. 613-616 ◽  
Author(s):  
W Mourad ◽  
K Mehindate ◽  
T J Schall ◽  
S R McColl

Cells in the rheumatoid synovium express high levels of major histocompatibility complex (MHC) class II molecules in vivo. We have therefore examined the ability of engagement of MHC class II molecules by the superantigen Staphylococcal enterotoxin A (SEA) to activate interleukin 6 (IL-6) and IL-8 gene expression in type B synoviocytes isolated from patients with rheumatoid arthritis. SEA had a minimal or undetectable effect on the expression of either gene in resting synoviocytes, as determined by Northern blot and specific enzyme-linked immunosorbent assay. However, induction of MHC class II molecule expression after treatment of synoviocytes with interferon gamma (IFN-gamma) enabled the cells to respond to SEA in a dose-dependent manner, resulting in an increase in both the level of steady-state mRNA for IL-6 and IL-8, and the release of these cytokines into the supernatant. IFN-gamma by itself had no effect on the expression of either cytokine. Pretreatment of the cells with the transcription inhibitor actinomycin D prevented the increase in cytokine mRNA induced by SEA, whereas cycloheximide superinduced mRNA for both cytokines after stimulation by SEA. Taken together, these results indicate that signaling through MHC class II molecules may represent a novel mechanism by which inflammatory cytokine production is regulated in type B rheumatoid synoviocytes, and potentially provides insight into the manner by which superantigens may initiate and/or propagate autoimmune diseases.


1992 ◽  
Vol 176 (1) ◽  
pp. 275-280 ◽  
Author(s):  
M A Blackman ◽  
F E Lund ◽  
S Surman ◽  
R B Corley ◽  
D L Woodland

It has been established that at least some V beta 17+ T cells interact with an endogenous superantigen encoded by the murine retrovirus, Mtv-9. To analyze the role of major histocompatibility complex (MHC) class II molecules in presenting the Mtv-9 encoded superantigen, vSAG-9 to V beta 17+ hybridomas, a panel of nine hybridomas was tested for their ability to respond to A20/2J (H-2d) and LBK (H-2a) cells which had been transfected with the vSAG-9 gene. Whereas some of the hybridomas recognized vSAG-9 exclusively in the context of H-2a, other hybridomas recognized vSAG-9 exclusively in the context of H-2d or in the context of both H-2d and H-2a. These results suggest that: (a) the class II MHC molecule plays a direct role in the recognition of retroviral superantigen by T cells, rather than serving simply as a platform for presentation; and, (b) it is likely that components of the TCR other than V beta are involved in the vSAG-9/TCR/class II interaction.


1993 ◽  
Vol 177 (6) ◽  
pp. 1699-1712 ◽  
Author(s):  
E K Bikoff ◽  
L Y Huang ◽  
V Episkopou ◽  
J van Meerwijk ◽  
R N Germain ◽  
...  

We used gene targeting techniques to produce mice lacking the invariant chain associated with major histocompatibility complex (MHC) class II molecules. Cells from these mice show a dramatic reduction in surface class II, resulting from both defective association of class II alpha and beta chains and markedly decreased post-Golgi transport. The few class II alpha/beta heterodimers reaching the cell surface behave as if empty or occupied by an easily displaced peptide, and display a distinct structure. Mutant spleen cells are defective in their ability to present intact protein antigens, but stimulate enhanced responses in the presence of peptides. These mutant mice have greatly reduced numbers of thymic and peripheral CD4+ T cells. Overall, this striking phenotype establishes that the invariant chain plays a critical role in regulating MHC class II expression and function in the intact animal.


1995 ◽  
Vol 181 (2) ◽  
pp. 619-629 ◽  
Author(s):  
S Baskar ◽  
L Glimcher ◽  
N Nabavi ◽  
R T Jones ◽  
S Ostrand-Rosenberg

Mice carrying large established major histocompatibility complex (MHC) class 1+ sarcoma tumors can be successfully treated by immunization with genetically engineered sarcoma cells transfected with syngeneic MHC class II plus B7-1 genes. This approach is significantly more effective than previously described strategies using cytokine- or B7-transduced tumor cells which are only effective against smaller tumor loads, and which cannot mediate regression of longer-term established tumors. The most efficient tumor rejection occurs if both the class II and B7-1 molecules are coexpressed on the same tumor cell. Immunity induced by immunization with class II+B7-1(+)-transfected sarcoma cells involves CD4+ and CD8+ T cells, suggesting that the increased effectiveness of the transfectants is due to their ability to activate both of these T cell populations.


Sign in / Sign up

Export Citation Format

Share Document