scholarly journals Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

2011 ◽  
Vol 279 (1731) ◽  
pp. 1041-1050 ◽  
Author(s):  
S. K. Hooker ◽  
A. Fahlman ◽  
M. J. Moore ◽  
N. Aguilar de Soto ◽  
Y. Bernaldo de Quirós ◽  
...  

Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N 2 ) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N 2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N 2 loading to management of the N 2 load . This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.

2019 ◽  
pp. 673-683
Author(s):  
Richard E. Moon ◽  

Gas can enter arteries (arterial gas embolism, AGE) due to alveolar-capillary disruption (caused by pulmonary over-pressurization, e.g. breath-hold ascent by divers) or veins (venous gas embolism, VGE) as a result of tissue bubble formation due to decompression (diving, altitude exposure) or during certain surgical procedures where capillary hydrostatic pressure at the incision site is subatmospheric. Both AGE and VGE can be caused by iatrogenic gas injection. AGE usually produces stroke-like manifestations, such as impaired consciousness, confusion, seizures and focal neurological deficits. Small amounts of VGE are often tolerated due to filtration by pulmonary capillaries; however VGE can cause pulmonary edema, cardiac “vapor lock” and AGE due to transpulmonary passage or right-to-left shunt through a patient foramen ovale. Intravascular gas can cause arterial obstruction or endothelial damage and secondary vasospasm and capillary leak. Vascular gas is frequently not visible with radiographic imaging, which should not be used to exclude the diagnosis of AGE. Isolated VGE usually requires no treatment; AGE treatment is similar to decompression sickness (DCS), with first aid oxygen then hyperbaric oxygen. Although cerebral AGE (CAGE) often causes intracranial hypertension, animal studies have failed to demonstrate a benefit of induced hypocapnia. An evidence-based review of adjunctive therapies is presented.


1970 ◽  
Vol 28 (4) ◽  
pp. 524-527 ◽  
Author(s):  
Kenneth G. Ikels

This report describes a mechanism, called tribonucleation, for producing gas nuclei by making and breaking contact between solid bodies which are immersed in liquid. A metal ball was rolled inside a glass tube filled with liquid which contains dissolved gas. Formed nuclei may grow to visible bubbles depending on the dissolved gas concentration and pressure applied to the liquid. Unlike other possible mechanisms for forming bubbles, tribonucleation is capable of producing nuclei under relatively mild experimental conditions, such as may be encountered in vivo. The experiments show that viscosity and velocity of separation of surfaces are important determinants of whether or not nuclei will form. bubble formation; decompression sickness Submitted on August 20, 1969


2020 ◽  
Vol 223 (17) ◽  
pp. jeb227736
Author(s):  
Shawn R. Noren

ABSTRACTMarine mammals endure extended breath-holds while performing active behaviors, which has fascinated scientists for over a century. It is now known that these animals have large onboard oxygen stores and utilize oxygen-conserving mechanisms to prolong aerobically supported dives to great depths, while typically avoiding (or tolerating) hypoxia, hypercarbia, acidosis and decompression sickness (DCS). Over the last few decades, research has revealed that diving physiology is underdeveloped at birth. Here, I review the postnatal development of the body's oxygen stores, cardiorespiratory system and other attributes of diving physiology for pinnipeds and cetaceans to assess how physiological immaturity makes young marine mammals vulnerable to disturbance. Generally, the duration required for body oxygen stores to mature varies across species in accordance with the maternal dependency period, which can be over 2 years long in some species. However, some Arctic and deep-diving species achieve mature oxygen stores comparatively early in life (prior to weaning). Accelerated development in these species supports survival during prolonged hypoxic periods when calves accompany their mothers under sea ice and to the bathypelagic zone, respectively. Studies on oxygen utilization patterns and heart rates while diving are limited, but the data indicate that immature marine mammals have a limited capacity to regulate heart rate (and hence oxygen utilization) during breath-hold. Underdeveloped diving physiology, in combination with small body size, limits diving and swimming performance. This makes immature marine mammals particularly vulnerable to mortality during periods of food limitation, habitat alterations associated with global climate change, fishery interactions and other anthropogenic disturbances, such as exposure to sonar.


1992 ◽  
Vol 73 (6) ◽  
pp. 2592-2595 ◽  
Author(s):  
P. Radermacher ◽  
K. J. Falke ◽  
Y. S. Park ◽  
D. W. Ahn ◽  
S. K. Hong ◽  
...  

Intravascular bubble formation and symptoms of decompression sickness have been reported during repetitive deep breath-hold diving. Therefore we examined the pattern of blood N2 kinetics during and after repetitive breath-hold diving. To study muscle N2 uptake and release, we measured brachial venous N2 partial pressure (PN2) in nine professional Korean breath-hold divers (ama) during a 3-h diving shift at approximately 4 m seawater depth and up to 4 h after diving. PN2 was determined with the manometric Van Slyke method. Diving time and depth were recorded using a backpack computer-assisted dive longer that allowed calculating the surface-to-depth time ratio to derive the effective depth. With the assumption that forearm muscle N2 kinetics follow the general Haldanian principles of compression and decompression, i.e., forearm muscle is a single compartment with a uniform tissue PN2 equal to venous PN2, PN2 data were fitted to monoexponential functions of time. In the early phase of the diving shift, PN2 rapidly increased to 640 Torr (half time = 6 min) and then slowly declined to baseline levels (half time = 36 min) after the work shift. Peak PN2 levels approximated the alveolar PN2 derived from the effective depth. We conclude that forearm muscle N2 kinetics are well described by a Haldanian single-compartment model. Decompression sickness is theoretically possible in the ama; it did not occur because the absolute PN2 remained low due to the shallow working depth of the ama we studied.


2018 ◽  
Vol 285 (1877) ◽  
pp. 20180482 ◽  
Author(s):  
Daniel Garcia Párraga ◽  
Michael Moore ◽  
Andreas Fahlman

Hydrostatic lung compression in diving marine mammals, with collapsing alveoli blocking gas exchange at depth, has been the main theoretical basis for limiting N 2 uptake and avoiding gas emboli (GE) as they ascend. However, studies of beached and bycaught cetaceans and sea turtles imply that air-breathing marine vertebrates may, under unusual circumstances, develop GE that result in decompression sickness (DCS) symptoms. Theoretical modelling of tissue and blood gas dynamics of breath-hold divers suggests that changes in perfusion and blood flow distribution may also play a significant role. The results from the modelling work suggest that our current understanding of diving physiology in many species is poor, as the models predict blood and tissue N 2 levels that would result in severe DCS symptoms (chokes, paralysis and death) in a large fraction of natural dive profiles. In this review, we combine published results from marine mammals and turtles to propose alternative mechanisms for how marine vertebrates control gas exchange in the lung, through management of the pulmonary distribution of alveolar ventilation ( ) and cardiac output/lung perfusion ( ), varying the level of in different regions of the lung. Man-made disturbances, causing stress, could alter the mismatch level in the lung, resulting in an abnormally elevated uptake of N 2 , increasing the risk for GE. Our hypothesis provides avenues for new areas of research, offers an explanation for how sonar exposure may alter physiology causing GE and provides a new mechanism for how air-breathing marine vertebrates usually avoid the diving-related problems observed in human divers.


2011 ◽  
Vol 279 (1732) ◽  
pp. 1396-1404 ◽  
Author(s):  
S. Dennison ◽  
M. J. Moore ◽  
A. Fahlman ◽  
K. Moore ◽  
S. Sharp ◽  
...  

Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber–muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.


2020 ◽  
Vol 11 ◽  
Author(s):  
Andreas Fahlman ◽  
Bruno Cozzi ◽  
Mercy Manley ◽  
Sandra Jabas ◽  
Marek Malik ◽  
...  

Previous reports suggested the existence of direct somatic motor control over heart rate (fH) responses during diving in some marine mammals, as the result of a cognitive and/or learning process rather than being a reflexive response. This would be beneficial for O2 storage management, but would also allow ventilation-perfusion matching for selective gas exchange, where O2 and CO2 can be exchanged with minimal exchange of N2. Such a mechanism explains how air breathing marine vertebrates avoid diving related gas bubble formation during repeated dives, and how stress could interrupt this mechanism and cause excessive N2 exchange. To investigate the conditioned response, we measured the fH-response before and during static breath-holds in three bottlenose dolphins (Tursiops truncatus) when shown a visual symbol to perform either a long (LONG) or short (SHORT) breath-hold, or during a spontaneous breath-hold without a symbol (NS). The average fH (ifHstart), and the rate of change in fH (difH/dt) during the first 20 s of the breath-hold differed between breath-hold types. In addition, the minimum instantaneous fH (ifHmin), and the average instantaneous fH during the last 10 s (ifHend) also differed between breath-hold types. The difH/dt was greater, and the ifHstart, ifHmin, and ifHend were lower during a LONG as compared with either a SHORT, or an NS breath-hold (P < 0.05). Even though the NS breath-hold dives were longer in duration as compared with SHORT breath-hold dives, the difH/dt was greater and the ifHstart, ifHmin, and ifHend were lower during the latter (P < 0.05). In addition, when the dolphin determined the breath-hold duration (NS), the fH was more variable within and between individuals and trials, suggesting a conditioned capacity to adjust the fH-response. These results suggest that dolphins have the capacity to selectively alter the fH-response during diving and provide evidence for significant cardiovascular plasticity in dolphins.


2020 ◽  
Vol 128 (5) ◽  
pp. 1439-1446
Author(s):  
Allyson G. Hindle

Marine mammals have highly specialized physiology, exhibited in many species by extreme breath-holding capabilities that allow deep dives and extended submergence. Cardiovascular control and cell-level hypoxia tolerance are key features of this phenotype. Identifying genomic signatures tied to physiology will be valuable in understanding these natural model species, which may generate translational opportunities to human diseases arising from hypoxic stress or tissue injury. Genomic analyses have now been conducted in dolphins, river dolphins, minke whales, bowhead whales, and polar bears, with multispecies studies exploring evolutionary signals across marine mammal lineages, encompassing extinct and extant divers. Single-species genome studies for sirenians do not yet exist. Extant marine mammals arose in three lineages from separate aquatic recolonizations. Their physiological specializations, along with these independent origins create an interesting case to examine convergent evolution. Although molecular mechanisms of hypoxia tolerance are not universally apparent across marine mammal genomic studies, altered evolutionary rates have been identified for genes linked to oxygen binding and transport (e.g., MB, HBA, and HBB), blood pressure control (e.g., endothelin pathway genes), and cell protection in multiple species. Despite convergent phenotypes across clades, instances of identical molecular convergence have been uncommon. Given the inherent logistical and regulatory difficulties associated with functional genetic experiments in marine mammals, several avenues of further investigation are suggested to enable validation of candidate genes for hypoxia tolerance: leveraging phylogeny to better understand convergent phenotypes; ontogenic studies to identify regulation of key genes underlying the elite, adult, hypoxia-tolerant physiology; and cell culture manipulations to understand gene function.


2005 ◽  
Vol 42 (4) ◽  
pp. 446-457 ◽  
Author(s):  
A. Fernández ◽  
J. F. Edwards ◽  
F. Rodríguez ◽  
A. Espinosa de los Monteros ◽  
P. Herráez ◽  
...  

A study of the lesions of beaked whales (BWs) in a recent mass stranding in the Canary Islands following naval exercises provides a possible explanation of the relationship between anthropogenic, acoustic (sonar) activities and the stranding and death of marine mammals. Fourteen BWs were stranded in the Canary Islands close to the site of an international naval exercise (Neo-Tapon 2002) held on 24 September 2002. Strandings began about 4 hours after the onset of midfrequency sonar activity. Eight Cuvier's BWs (Ziphius cavirostris), one Blainville's BW (Mesoplodon densirostris), and one Gervais' BW (Mesoplodon europaeus) were examined postmortem and studied histopathologically. No inflammatory or neoplastic processes were noted, and no pathogens were identified. Macroscopically, whales had severe, diffuse congestion and hemorrhage, especially around the acoustic jaw fat, ears, brain, and kidneys. Gas bubble-associated lesions and fat embolism were observed in the vessels and parenchyma of vital organs. In vivo bubble formation associated with sonar exposure that may have been exacerbated by modified diving behavior caused nitrogen supersaturation above a threshold value normally tolerated by the tissues (as occurs in decompression sickness). Alternatively, the effect that sonar has on tissues that have been supersaturated with nitrogen gas could be such that it lowers the threshold for the expansion of in vivo bubble precursors (gas nuclei). Exclusively or in combination, these mechanisms may enhance and maintain bubble growth or initiate embolism. Severely injured whales died or became stranded and died due to cardiovascular collapse during beaching. The present study demonstrates a new pathologic entity in cetaceans. The syndrome is apparently induced by exposure to mid-frequency sonar signals and particularly affects deep, long-duration, repetitive-diving species like BWs.


2020 ◽  
Vol 15 (3) ◽  
pp. 211-235
Author(s):  
Josephine Chazot ◽  
Ludovic Hoarau ◽  
Pamela Carzon ◽  
Jeanne Wagner ◽  
Stéphanie Sorby ◽  
...  

Whale-watching activities provide important socioeconomic benefits for local communities and constitute powerful platform incentives for marine mammals' protection or more broadly marine environments. However, these activities can cause adverse effects on targeted populations, with considerable downside associated risks of injuries and fatality for whale watchers during inwater interactions. France with its overseas territories has the second largest exclusive economic zone (EEZ), in which more than half of existing cetacean species are encountered. In these territories, recreational and commercial whale watching, including swim-with cetacean activities, have recently developed. Yet few studies focused on these activities and their associated impacts across French territories, leading to an unclear assessment of the situation. To address this issue, we reviewed cetaceans' occurrence within the French EEZ, whale-watching industry, targeted species, local management of marine mammal-based tourism activities, and regulations in France mainland and some overseas territories (Reunion Island, Mayotte, and French Polynesia). Fortyeight species are encountered in the French EEZ, and 15 are targeted by whale-watching activities. A total of 185 operators, including 34% offering swim-with-cetaceans tours, offered trips in France and overseas in 2019. While several more or less restrictive regulations exist locally, our results indicate that French's national legal framework for marine mammals' protection remains inadequate and insufficient to cope with the recent development of this activity. As conservation biologists, managers, and stakeholders from these French territories, we cooperated to provide general guidelines for a sustainable development of whale watching at a national scale. We urge (1) to legally acknowledge and regulate whale-watching commercial activities; (2) to create a national legal framework regarding whale watching and swim-with marine mammals practices, while accounting for local distinctiveness and disparities across regions; (3) to conduct more research to evaluate local short- and long-term impacts on targeted marine mammal populations as well as the socioeconomic benefits; and (4) to reinforce synergetic relations between the different stakeholders.


Sign in / Sign up

Export Citation Format

Share Document