scholarly journals Fish introductions reveal the temperature dependence of species interactions

2014 ◽  
Vol 281 (1775) ◽  
pp. 20132641 ◽  
Author(s):  
Catherine L. Hein ◽  
Gunnar Öhlund ◽  
Göran Englund

A major area of current research is to understand how climate change will impact species interactions and ultimately biodiversity. A variety of environmental conditions are rapidly changing owing to climate warming, and these conditions often affect both the strength and outcome of species interactions. We used fish distributions and replicated fish introductions to investigate environmental conditions influencing the coexistence of two fishes in Swedish lakes: brown trout ( Salmo trutta ) and pike ( Esox lucius ). A logistic regression model of brown trout and pike coexistence showed that these species coexist in large lakes (more than 4.5 km 2 ), but not in small, warm lakes (annual air temperature more than 0.9–1.5°C). We then explored how climate change will alter coexistence by substituting climate scenarios for 2091–2100 into our model. The model predicts that brown trout will be extirpated from approximately half of the lakes where they presently coexist with pike and from nearly all 9100 lakes where pike are predicted to invade. Context dependency was critical for understanding pike–brown trout interactions, and, given the widespread occurrence of context-dependent species interactions, this aspect will probably be critical for accurately predicting climate impacts on biodiversity.

Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 609 ◽  
Author(s):  
Ester González de Andrés

Forest ecosystems are undergoing unprecedented changes in environmental conditions due to global change impacts. Modification of global biogeochemical cycles of carbon and nitrogen, and the subsequent climate change are affecting forest functions at different scales, from physiology and growth of individual trees to cycling of nutrients. This review summarizes the present knowledge regarding the impact of global change on forest functioning not only with respect to climate change, which is the focus of most studies, but also the influence of altered nitrogen cycle and the interactions among them. The carbon dioxide (CO2) fertilization effect on tree growth is expected to be constrained by nutrient imbalances resulting from high N deposition rates and the counteractive effect of increasing water deficit, which interact in a complex way. At the community level, responses to global change are modified by species interactions that may lead to competition for resources and/or relaxation due to facilitation and resource partitioning processes. Thus, some species mixtures can be more resistant to drought than their respective pure forests, albeit it depends on environmental conditions and species’ functional traits. Climate change and nitrogen deposition have additional impacts on litterfall dynamics, and subsequent decomposition and nutrient mineralization processes. Elemental ratios (i.e., stoichiometry) are associated with important ecosystem traits, including trees’ adaptability to stress or decomposition rates. As stoichiometry of different ecosystem components are also influenced by global change, nutrient cycling in forests will be altered too. Therefore, a re-assessment of traditional forest management is needed in order to cope with global change. Proposed silvicultural systems emphasize the key role of diversity to assure multiple ecosystem services, and special attention has been paid to mixed-species forests. Finally, a summary of the patterns and underlying mechanisms governing the relationships between diversity and different ecosystems functions, such as productivity and stability, is provided.


2018 ◽  
Vol 386 ◽  
pp. 98-114 ◽  
Author(s):  
Rafael Muñoz-Mas ◽  
Patricia Marcos-Garcia ◽  
Antonio Lopez-Nicolas ◽  
Francisco J. Martínez-García ◽  
Manuel Pulido-Velazquez ◽  
...  

Hydrobiologia ◽  
2015 ◽  
Vol 751 (1) ◽  
pp. 23-24
Author(s):  
Julian Junker ◽  
Florian U. M. Heimann ◽  
Christoph Hauer ◽  
Jens M. Turowski ◽  
Dieter Rickenmann ◽  
...  

2008 ◽  
Vol 275 (1653) ◽  
pp. 2859-2868 ◽  
Author(s):  
Lasse Fast Jensen ◽  
Michael M Hansen ◽  
Cino Pertoldi ◽  
Gert Holdensgaard ◽  
Karen-Lise Dons Mensberg ◽  
...  

Knowledge of local adaptation and adaptive potential of natural populations is becoming increasingly relevant due to anthropogenic changes in the environment, such as climate change. The concern is that populations will be negatively affected by increasing temperatures without the capacity to adapt. Temperature-related adaptability in traits related to phenology and early life history are expected to be particularly important in salmonid fishes. We focused on the latter and investigated whether four populations of brown trout ( Salmo trutta ) are locally adapted in early life-history traits. These populations spawn in rivers that experience different temperature conditions during the time of incubation of eggs and embryos. They were reared in a common-garden experiment at three different temperatures. Quantitative genetic differentiation ( Q ST ) exceeded neutral molecular differentiation ( F ST ) for two traits, indicating local adaptation. A temperature effect was observed for three traits. However, this effect varied among populations due to locally adapted reaction norms, corresponding to the temperature regimes experienced by the populations in their native environments. Additive genetic variance and heritable variation in phenotypic plasticity suggest that although increasing temperatures are likely to affect some populations negatively, they may have the potential to adapt to changing temperature regimes.


2021 ◽  
Author(s):  
Bárbara Rocha Cardeli ◽  
Bianca Fazio Rius ◽  
Caio Fascina ◽  
João Paulo Darela-Filho ◽  
Gabriela Martins Sophia ◽  
...  

<p>The increase of CO<sub>2</sub> concentrations implies direct and indirect (by changing climate) impacts on the terrestrial ecosystem. Several Dynamic Global Vegetation Models (DGVMs) have been developed to better understand the response of vegetation to climate change. However, the representation of plant diversity through a small set of Plant Functional Types (PFTs) adopted by the majority of DGVMs undermines their ability to represent functional diversity and fundamental interactions between these different life strategies of plants, like competition, which has been shown to be paramount in determining ecosystem functioning. Studies have shown that increasing CO<sub>2</sub> concentration may determine the outcome of vegetation competition and, as a consequence, the ability to adapt to the environment, functional diversity, and community assembly mechanisms. Thus, the inclusion of competitive dynamics in these models becomes strategic to improve predictions and understanding the effects of climate change on vegetation and how it affects change in carbon fluxes and stocks in the community. In that sense, this project aims to contribute to the development of a light competition module within CAETÊ model (<strong>C</strong>Arbon and <strong>E</strong>cosystem functional <strong>T</strong>rait <strong>E</strong>valuation model) which involves the implementation of allometric relations between plant organs. As a trait-based model, CAETÊ seeks to represent plant functional diversity in a less discrete way through the usage of variant values for functional traits. For this purpose, two key functional traits that are closely related to competition for light are employed as variants: <em>wood density </em>(WD) and <em>specific leaf area </em>(SLA). The main objective is to understand how light competition related to plant functional traits alters the response of Amazon plant communities under changing environmental conditions. As preliminary results, the algorithms containing the allometric and competition equations were developed outside the main model code and represent plant dynamics trade-offs between the variant functional traits and plant physiology and survivorship: WD relates to strategies of mortality and height growth. For example, high values of WD [1g/cm<sup>-3</sup>] are related to low heights [~30m.] and, low heights incur higher mortality rates; SLA relates to light competitive effect, Leaf Economics Spectrum, and LAI (leaf area index) determination, one of the most important parameters that determine the absorption of light by different life strategies. These trade-offs allow the representation of different plant life competition strategies. We expected that the light restriction for some functional strategies may incur a decrease in functional dominance and photosynthesis rate, consequently changing net primary productivity and after all the functional structure of the community. For functional diversity, it is expected changes in functional richness and functional divergence (related to the strength that competition exerts in the community) in order to favor strategies that better deal with the new environmental conditions simulated by CAETÊ with increasing [CO<sub>2</sub>] to 600 ppmv, for example. Finally, it is expected that this approach may contribute to improving the representation of competition for light in DGVMs to more assertively obtain the effects of climate changes on vegetation and ecosystem dynamics. Final results will be obtained until the EGU Congress takes place.</p>


2016 ◽  
Vol 12 (10) ◽  
pp. 20160586 ◽  
Author(s):  
Sonya K. Auer ◽  
Karine Salin ◽  
Agata M. Rudolf ◽  
Graeme J. Anderson ◽  
Neil B. Metcalfe

Metabolic rates reflect the energetic cost of living but exhibit remarkable variation among conspecifics, partly as a result of the constraints imposed by environmental conditions. Metabolic rates are sensitive to changes in temperature and oxygen availability, but effects of food availability, particularly on maximum metabolic rates, are not well understood. Here, we show in brown trout ( Salmo trutta ) that maximum metabolic rates are immutable but minimum metabolic rates increase as a positive function of food availability. As a result, aerobic scope (i.e. the capacity to elevate metabolism above baseline requirements) declines as food availability increases. These differential changes in metabolic rates likely have important consequences for how organisms partition available metabolic power to different functions under the constraints imposed by food availability.


Sign in / Sign up

Export Citation Format

Share Document