scholarly journals Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history

2015 ◽  
Vol 282 (1800) ◽  
pp. 20142245 ◽  
Author(s):  
Robert S. Sansom ◽  
Emma Randle ◽  
Philip C. J. Donoghue

The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem–gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates.

Paleobiology ◽  
2018 ◽  
Vol 44 (4) ◽  
pp. 561-574 ◽  
Author(s):  
Melanie J. Hopkins ◽  
David W. Bapst ◽  
Carl Simpson ◽  
Rachel C. M. Warnock

AbstractThe two major approaches to studying macroevolution in deep time are the fossil record and reconstructed relationships among extant taxa from molecular data. Results based on one approach sometimes conflict with those based on the other, with inconsistencies often attributed to inherent flaws of one (or the other) data source. Any contradiction between the molecular and fossil records represents a failure of our ability to understand the imperfections of our data, as both are limited reflections of the same evolutionary history. We therefore need to develop conceptual and mathematical models that jointly explain our observations in both records. Fortunately, the different limitations of each record provide an opportunity to test or calibrate the other, and new methodological developments leverage both records simultaneously. However, we must reckon with the distinct relationships between sampling and time in the fossil record and molecular phylogenies. These differences impact our recognition of baselines and the analytical incorporation of age estimate uncertainty.


2010 ◽  
Vol 278 (1705) ◽  
pp. 599-604 ◽  
Author(s):  
J. E. Tarver ◽  
P. C. J. Donoghue ◽  
M. J. Benton

Mass media and popular science journals commonly report that new fossil discoveries have ‘rewritten evolutionary history’. Is this merely journalistic hyperbole or is our sampling of systematic diversity so limited that attempts to derive evolutionary history from these datasets are premature? We use two exemplars—catarrhine primates (Old World monkeys and apes) and non-avian dinosaurs—to investigate how the maturity of datasets can be assessed. Both groups have been intensively studied over the past 200 years and so should represent pinnacles in our knowledge of vertebrate systematic diversity. We test the maturity of these datasets by assessing the completeness of their fossil records, their susceptibility to changes in macroevolutionary hypotheses and the balance of their phylogenies through study time. Catarrhines have shown prolonged stability, with discoveries of new species being evenly distributed across the phylogeny, and thus have had little impact on our understanding of their fossil record, diversification and evolution. The reverse is true for dinosaurs, where the addition of new species has been non-random and, consequentially, their fossil record, tree shape and our understanding of their diversification is rapidly changing. The conclusions derived from these analyses are relevant more generally: the maturity of systematic datasets can and should be assessed before they are exploited to derive grand macroevolutionary hypotheses.


2015 ◽  
Vol 11 (2) ◽  
pp. 20140835 ◽  
Author(s):  
Robert W. Boessenecker ◽  
Morgan Churchill

The poorly known fossil record of fur seals and sea lions (Otariidae) does not reflect their current diversity and widespread abundance. This limited fossil record contrasts with the more complete fossil records of other pinnipeds such as walruses (Odobenidae). The oldest known otariids appear 5–6 Ma after the earliest odobenids, and the remarkably derived craniodental morphology of otariids offers few clues to their early evolutionary history and phylogenetic affinities among pinnipeds. We report a new otariid, Eotaria crypta , from the lower middle Miocene ‘Topanga’ Formation (15–17.1 Ma) of southern California, represented by a partial mandible with well-preserved dentition. Eotaria crypta is geochronologically intermediate between ‘enaliarctine’ stem pinnipedimorphs (16.6–27 Ma) and previously described otariid fossils (7.3–12.5 Ma), as well as morphologically intermediate by retaining an M 2 and a reduced M 1 metaconid cusp and lacking P 2–4 metaconid cusps. Eotaria crypta eliminates the otariid ghost lineage and confirms that otariids evolved from an ‘enaliarctine’-like ancestor.


Paleobiology ◽  
2018 ◽  
Vol 44 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Tara M. Smiley

AbstractFor mammals today, mountains are diverse ecosystems globally, yet the strong relationship between species richness and topographic complexity is not a persistent feature of the fossil record. Based on fossil-occurrence data, diversity and diversification rates in the intermontane western North America varied through time, increasing significantly during an interval of global warming and regional intensification of tectonic activity from 18 to 14 Ma. However, our ability to infer origination and extinction rates reliably from the fossil record is affected by variation in preservation history. To investigate the influence of preservation on estimates of diversification rates, I simulated fossil records under four alternative diversification hypotheses and six preservation scenarios. Diversification hypotheses included tectonically controlled speciation pulses, while preservation scenarios were based on common trends (e.g., increasing rock record toward the present) or derived from fossil occurrences and the continental rock record. For each scenario, I estimated origination, extinction, and diversification rates using three standard methods—per capita, three-timer, and capture–mark–recapture (CMR) metrics—and evaluated the ability of the simulated fossil records to accurately recover the underlying diversification dynamics. Despite variable and low preservation probabilities, simulated fossil records retained the signal of true rates in several of the scenarios. The three metrics did not exhibit similar behavior under each preservation scenario: while three-timer and CMR metrics produced more accurate rate estimates, per capita rates tended to better reproduce true shifts in origination rates. All metrics suffered from spurious peaks in origination and extinction rates when highly volatile preservation impacted the simulated record. Results from these simulations indicate that elevated diversification rates in relation to tectonic activity during the middle Miocene are likely to be evident in the fossil record, even if preservation in the North American fossil record was variable. Input from the past is necessary to evaluate the ultimate mechanisms underlying speciation and extinction dynamics.


2017 ◽  
Author(s):  
Robert Boessenecker ◽  
Morgan Churchill

The poorly known fossil record of fur seals and sea lions (Otariidae) does not reflect their current diversity and widespread abundance. This limited fossil record contrasts with the more complete fossil records of other pinnipeds such as walruses (Odobenidae). The oldest known otariids appear 5-6 Ma after the earliest odobenids, and the remarkably derived craniodental morphology of otariids offers few clues to their early evolutionary history and phylogenetic affinities among pinnipeds. We report a new otariid, Eotaria crypta, from the early middle Miocene “Topanga” Formation (15-17.5 Ma) of southern California, represented by a partial mandible with well-preserved dentition. Eotaria crypta is geochronologically intermediate between “enaliarctine” stem pinnipedimorphs (16.6-27 Ma) and previously described otariid fossils (7.3-12.5 Ma), as well as morphologically intermediate by retaining an M2 and a reduced M1 metaconid cusp and lacking P2-4 metaconid cusps. Eotaria crypta eliminates the otariid ghost lineage and confirms that otariids evolved from an “enaliarctine”-like ancestor.


2021 ◽  
Author(s):  
Igor Musauer Kessous ◽  
Beatriz Neves ◽  
Fabiano Salgueiro ◽  
Andrea Ferreira Costa

2015 ◽  
Vol 370 (1684) ◽  
pp. 20150046 ◽  
Author(s):  
Gregory A. Wray

The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation.


Science ◽  
2021 ◽  
Vol 373 (6556) ◽  
pp. 792-796 ◽  
Author(s):  
Paul K. Strother ◽  
Clinton Foster

Molecular time trees indicating that embryophytes originated around 500 million years ago (Ma) during the Cambrian are at odds with the record of fossil plants, which first appear in the mid-Silurian almost 80 million years later. This time gap has been attributed to a missing fossil plant record, but that attribution belies the case for fossil spores. Here, we describe a Tremadocian (Early Ordovician, about 480 Ma) assemblage with elements of both Cambrian and younger embryophyte spores that provides a new level of evolutionary continuity between embryophytes and their algal ancestors. This finding suggests that the molecular phylogenetic signal retains a latent evolutionary history of the acquisition of the embryophytic developmental genome, a history that perhaps began during Ediacaran-Cambrian time but was not completed until the mid-Silurian (about 430 Ma).


2018 ◽  
Vol 15 (148) ◽  
pp. 20180560 ◽  
Author(s):  
Giliane P. Odin ◽  
Maria E. McNamara ◽  
Hans Arwin ◽  
Kenneth Järrendahl

Scarab beetles (Coleoptera: Scarabaeidae) can exhibit striking colours produced by pigments and/or nanostructures. The latter include helicoidal (Bouligand) structures that can generate circularly polarized light. These have a cryptic evolutionary history in part because fossil examples are unknown. This suggests either a real biological signal, i.e. that Bouligand structures did not evolve until recently, or a taphonomic signal, i.e. that conditions during the fossilization process were not conducive to their preservation. We address this issue by experimentally degrading circularly polarizing cuticle of modern scarab beetles to test the relative roles of decay, maturation and taxonomy in controlling preservation. The results reveal that Bouligand structures have the potential to survive fossilization, but preservation is controlled by taxonomy and the diagenetic history of specimens. Further, cuticle of specific genus ( Chrysina ) is particularly decay-prone in alkaline conditions; this may relate to the presence of certain compounds, e.g. uric acid, in the cuticle of these taxa.


Paleobiology ◽  
2018 ◽  
Vol 44 (4) ◽  
pp. 638-659
Author(s):  
Harriet B. Drage ◽  
Lukáš Laibl ◽  
Petr Budil

AbstractA large sample of postembryonic specimens of Dalmanitina proaeva elfrida and D. socialis from the Upper Ordovician (Sandbian to Katian) Prague Basin allows for the first reasonably complete ontogenetic sequence of Dalmanitoidea (Phacopina). The material provides an abundance of morphological information, including well-preserved marginal spines in protaspides and meraspides, and hypostome external surfaces throughout. The development of D. proaeva elfrida is unusual due to variability in timing of the first trunk articulation. This broadens our developmental understanding of Phacopina, a diverse group of phacopid trilobites, and also allows us to study the evolution of their specializations in exoskeletal molting behavior. Adult phacopines, unlike most other trilobites, had fused facial sutures. This means that rather than molting through the sutural gape mode, characterized by opening of the facial sutures and separation of the librigenae, they disarticulated the entire cephalon in Salter’s mode of molting. For other phacopine clades (Phacopoidea) the transition to Salter’s mode occurs during the meraspid period or at the onset of holaspis, and its developmental timing is intraspecifically fixed. However, owing to the large sample size, we can see that facial suture fusion likely occurred later in Dalmanitina, usually during the holaspid period, and was intraspecifically variable with holaspides of varying sizes showing unfused sutures. Further, D. proaeva elfrida specimens showed an initial librigenal–rostral plate fusion event, where the librigenae began as separate entities but appear fused with the rostral plate as one structure (the “lower cephalic unit”) from M1, and are discarded as such during molting. Dalmanitoidea is considered to represent the first phacopine divergence, occurring earliest in the fossil record. This material therefore provides insight into how linked morphologies and behaviors evolved, potentially suggesting the timing of facial suture fusion in Phacopina moved earlier during development and became more intraspecifically fixed over geological time.


Sign in / Sign up

Export Citation Format

Share Document