Postembryonic development of Dalmanitina, and the evolution of facial suture fusion in Phacopina

Paleobiology ◽  
2018 ◽  
Vol 44 (4) ◽  
pp. 638-659
Author(s):  
Harriet B. Drage ◽  
Lukáš Laibl ◽  
Petr Budil

AbstractA large sample of postembryonic specimens of Dalmanitina proaeva elfrida and D. socialis from the Upper Ordovician (Sandbian to Katian) Prague Basin allows for the first reasonably complete ontogenetic sequence of Dalmanitoidea (Phacopina). The material provides an abundance of morphological information, including well-preserved marginal spines in protaspides and meraspides, and hypostome external surfaces throughout. The development of D. proaeva elfrida is unusual due to variability in timing of the first trunk articulation. This broadens our developmental understanding of Phacopina, a diverse group of phacopid trilobites, and also allows us to study the evolution of their specializations in exoskeletal molting behavior. Adult phacopines, unlike most other trilobites, had fused facial sutures. This means that rather than molting through the sutural gape mode, characterized by opening of the facial sutures and separation of the librigenae, they disarticulated the entire cephalon in Salter’s mode of molting. For other phacopine clades (Phacopoidea) the transition to Salter’s mode occurs during the meraspid period or at the onset of holaspis, and its developmental timing is intraspecifically fixed. However, owing to the large sample size, we can see that facial suture fusion likely occurred later in Dalmanitina, usually during the holaspid period, and was intraspecifically variable with holaspides of varying sizes showing unfused sutures. Further, D. proaeva elfrida specimens showed an initial librigenal–rostral plate fusion event, where the librigenae began as separate entities but appear fused with the rostral plate as one structure (the “lower cephalic unit”) from M1, and are discarded as such during molting. Dalmanitoidea is considered to represent the first phacopine divergence, occurring earliest in the fossil record. This material therefore provides insight into how linked morphologies and behaviors evolved, potentially suggesting the timing of facial suture fusion in Phacopina moved earlier during development and became more intraspecifically fixed over geological time.

2019 ◽  
Vol 115 (5/6) ◽  
Author(s):  
Juliet K. Brophy ◽  
Joel Irish ◽  
Steve E. Churchill ◽  
Darryl J. de Ruiter ◽  
John Hawks ◽  
...  

Prior to the recovery of Homo naledi from the Dinaledi Chamber of the Rising Star Cave system, the Middle Pleistocene fossil record in Africa was particularly sparse. With the large sample size now available from Dinaledi, the opportunity exists to reassess taxonomically ambiguous teeth unearthed at the nearby site of Sterkfontein. Teeth recovered from Lincoln Cave South and area L/63 at Sterkfontein have been considered ‘most probably Homo ergaster’ and ‘perhaps Archaic Homo sapiens’, respectively. Given the similarities shared between Lincoln Cave, area L/63, and the Dinaledi Chamber with regard to climatic/geologic depositional context and age, two teeth from the former sites, StW 592 and StW 585 respectively, were compared with corresponding tooth types of H. naledi from the Dinaledi Chamber. The results of our study indicate that the Lincoln Cave and area L/63 teeth are morphologically inconsistent with the variation recognised in the H. naledi teeth. Significance: The similar age and climatic/geologic depositional and post-depositional circumstances at Lincoln Cave South, area L/63 at Sterkfontein and the Dinaledi Chamber, Rising Star raise the possibility that these fossils might represent the same species. The teeth StW 592 and StW 585 are not consistent with the variation evident in the known naledi sample. The results of the study do not add to the question of the existence of at least two species of the genus Homo living in close proximity to each other in South Africa at approximately the same time.


PalZ ◽  
2021 ◽  
Author(s):  
Carolin Haug ◽  
Joachim T. Haug

AbstractWhip spiders (Amblypygi), as their name suggests, resemble spiders (Araneae) in some aspects, but differ from them by their heart-shaped (prosomal) dorsal shield, their prominent grasping pedipalps, and their subsequent elongate pair of feeler appendages. The oldest possible occurrences of whip spiders, represented by cuticle fragments, date back to the Devonian (c. 385 mya), but (almost) complete fossils are known from the Carboniferous (c. 300 mya) onwards. The fossils include specimens preserved on slabs or in nodules (Carboniferous, Cretaceous) as well as specimens preserved in amber (Cretaceous, Eocene, Miocene). We review here all fossil whip spider specimens, figure most of them as interpretative drawings or with high-quality photographs including 3D imaging (stereo images) to make the three-dimensional relief of the specimens visible. Furthermore, we amend the list by two new specimens (resulting in 37 in total). The fossil specimens as well as modern whip spiders were measured to analyse possible changes in morphology over time. In general, the shield appears to have become relatively broader and the pedipalps and walking appendages have become more elongate over geological time. The morphological details are discussed in an evolutionary framework and in comparison with results from earlier studies.


Author(s):  
Alison Sizer ◽  
Oliver Duke-Williams

Background and Rationale The ONS Longitudinal Study (‘the LS’) covers England and Wales and includes individual data from the 1971 – 2011 decennial censuses and linked information on births, deaths and cancer registrations. It is representative of the population of England and Wales. Aim This presentation describes the LS and the linked administrative data, and showcases recent/ prominent examples of research. Methods and Approach The LS is built around samples drawn from decennial censuses, with its initial sample drawn from the 1971 Census. It also contains information about other people living in a sample-member’s household. Substantial emphasis is placed on security of access to the data and its responsible use. All research outputs are checked and are only released to users once disclosure control requirements are met. Linkage of study members from one census to another and vital events is carried out by ONS. Results The LS has been used for a variety of research. Using linked census and death records occupational differences in mortality rates have been researched. Individual records from all five censuses have been used to contribute to research social mobility, and research has also investigated the effects of long-term exposure to air pollution. Research has provided evidence of impact for social policy issues, e.g. health inequalities and the State Pension Age Review. Discussion The main strength of the LS is its large sample size (>1 million), making it the largest nationally representative longitudinal dataset in the UK. This allows analysis of small areas and specific population groups. Sampling bias is almost nil, and response rates are very high relative to other cohort and panel studies. Conclusion The ONS Longitudinal Study is a vital UK research asset, providing access to a large sample of census data linked across five censuses. It is strengthened through linkage to events data.


2018 ◽  
Vol 115 (21) ◽  
pp. 5323-5331 ◽  
Author(s):  
Allison C. Daley ◽  
Jonathan B. Antcliffe ◽  
Harriet B. Drage ◽  
Stephen Pates

Euarthropoda is one of the best-preserved fossil animal groups and has been the most diverse animal phylum for over 500 million years. Fossil Konservat-Lagerstätten, such as Burgess Shale-type deposits (BSTs), show the evolution of the euarthropod stem lineage during the Cambrian from 518 million years ago (Ma). The stem lineage includes nonbiomineralized groups, such as Radiodonta (e.g., Anomalocaris) that provide insight into the step-by-step construction of euarthropod morphology, including the exoskeleton, biramous limbs, segmentation, and cephalic structures. Trilobites are crown group euarthropods that appear in the fossil record at 521 Ma, before the stem lineage fossils, implying a ghost lineage that needs to be constrained. These constraints come from the trace fossil record, which show the first evidence for total group Euarthropoda (e.g., Cruziana, Rusophycus) at around 537 Ma. A deep Precambrian root to the euarthropod evolutionary lineage is disproven by a comparison of Ediacaran and Cambrian lagerstätten. BSTs from the latest Ediacaran Period (e.g., Miaohe biota, 550 Ma) are abundantly fossiliferous with algae but completely lack animals, which are also missing from other Ediacaran windows, such as phosphate deposits (e.g., Doushantuo, 560 Ma). This constrains the appearance of the euarthropod stem lineage to no older than 550 Ma. While each of the major types of fossil evidence (BSTs, trace fossils, and biomineralized preservation) have their limitations and are incomplete in different ways, when taken together they allow a coherent picture to emerge of the origin and subsequent radiation of total group Euarthropoda during the Cambrian.


Author(s):  
Jane H. Hodgkinson ◽  
Frank D. Stacey

2018 ◽  
pp. 437-445
Author(s):  
Gregory S. Thomas

The chapter Heart Rate Response to Exercise reviews the studies performed to estimate a patient’s maximum predicted heart rate. While the commonly used formula (220 – age), developed in 1971, is easy to remember, it underestimates the actual maximum heart rate in older persons. Studies of large sample size have found the maximum heart rate to be relatively independent of sex and physical fitness but to incrementally decline with age. The decrease with age is less than 1 beat per minute per year, however. A more accurate and recommended formula is [(208) – (0.7)(age)] as developed by Tanaka and colleagues.


Paleobiology ◽  
2019 ◽  
Vol 45 (02) ◽  
pp. 235-245 ◽  
Author(s):  
Seth Finnegan ◽  
James G. Gehling ◽  
Mary L. Droser

AbstractRecent excavations of Ediacaran assemblages have revealed striking bed-to-bed variation in diversity–abundance structure, offering potential insight into the ecology and taphonomy of these poorly understood early Metazoan ecosystems. Here we compare faunal variability in Ediacaran assemblages to that of younger benthic assemblages, both fossil and modern. We decompose the diversity of local assemblages into within-collection (α) and among-collection (β) components and show that β diversity in Ediacaran assemblages is unusually high relative to younger assemblages. Average between-bed ecological dissimilarities in the Phanerozoic fossil record are comparable to within-habitat dissimilarities typically observed over meter to kilometer scales in modern benthic marine habitats, but dissimilarities in Ediacaran assemblages are comparable to those typically observed over 10–100 km scales in modern habitats. We suggest that the unusually variable diversity–abundance structure of Ediacaran assemblages is due both to their preservation as near snapshots of benthic communities and to original ecological differences, in particular the paucity of motile taxa and the near lack of predation and infaunalization.


1970 ◽  
Vol 7 (01) ◽  
pp. 1-20 ◽  
Author(s):  
Ora Engleberg Percus ◽  
Jerome K. Percus

A generating function technique is used to determine the probability that the deviation between two empirical distributions drawn from the same population lies within a given band a specified number of times. We also treat the asymptotic problem of very large sample size, and obtain explicit expressions when the relative number of failures is very small or very large.


Sign in / Sign up

Export Citation Format

Share Document