scholarly journals Temporal variability and cooperative breeding: testing the bet-hedging hypothesis in the acorn woodpecker

2015 ◽  
Vol 282 (1816) ◽  
pp. 20151742 ◽  
Author(s):  
Walter D. Koenig ◽  
Eric L. Walters

Cooperative breeding is generally considered an adaptation to ecological constraints on dispersal and independent breeding, usually due to limited breeding opportunities. Although benefits of cooperative breeding are typically thought of in terms of increased mean reproductive success, it has recently been proposed that this phenomenon may be a bet-hedging strategy that reduces variance in reproductive success (fecundity variance) in populations living in highly variable environments. We tested this hypothesis using long-term data on the polygynandrous acorn woodpecker ( Melanerpes formicivorus ). In general, fecundity variance decreased with increasing sociality, at least when controlling for annual variation in ecological conditions. Nonetheless, decreased fecundity variance was insufficient to compensate for reduced per capita reproductive success of larger, more social groups, which typically suffered lower estimated mean fitness. We did, however, find evidence that sociality in the form of larger group size resulted in increased fitness in years following a small acorn crop due to reduced fecundity variance. Bet-hedging, although not the factor driving sociality in general, may play a role in driving acorn woodpecker group living when acorns are scarce and ecological conditions are poor.


2019 ◽  
Author(s):  
Violetta La Cono ◽  
Enzo Messina ◽  
Manfred Rohde ◽  
Erika Arcadi ◽  
Sergio Ciordia ◽  
...  

AbstractNanohaloarchaeota, a clade of diminutive archaea, with small genomes and limited metabolic capabilities, are ubiquitous in hypersaline habitats, which they share with the extremely halophilic and phylogenetically distant euryarchaea. Some of these nanohaloarchaeota and euryarchaea appear to interact with each other. In this study, we investigate the genetic and physiological nature of their relationship. We isolated the nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh and the haloarchaeon Halomicrobium sp. LC1Hm from a solar saltern, reproducibly co-cultivated these species, sequenced their genomes, and characterized their metabolic/trophic interactions. The nanohaloarchaeon is a magnesium-dependent aerotolerant heterotrophic anaerobe of the DPANN superphylum; it lacks respiratory complexes and its energy production relies on fermentative metabolism of sugar derivatives, obtained by depolymerizing alpha-glucans or by acquiring the chitin monomer N-acetylglucosamine from the chitinolytic haloarchaeal host. Halomicrobium is a member of the class Halobacteria and a chitinotrophic aerobe. The nanohaloarchaeon lacks key biosynthetic pathways and is likely to be provided with amino acids, lipids, nucleotides and cofactors via physical contact with its host Halomicrobium. In turn, the ability of Ca. Nanohalobium to hydrolyse alpha-glucans boosts the host’s growth in the absence of a chitin substrate. These findings suggest that at least some members of the nanohaloarchaea, previously considered ecologically unimportant given their limited metabolic potential, in fact may play significant roles in the microbial carbon turnover, food chains, and ecosystem function. The behaviour of Halomicrobium, which accommodates the colonization by Ca. Nanohalobium, can be interpreted as a bet-hedging strategy, maximizing its long-term fitness in a habitat where the availability of carbon substrates can vary both spatially and temporarily.



2011 ◽  
Vol 279 (1727) ◽  
pp. 379-386 ◽  
Author(s):  
Melissa L. Evans ◽  
Mélanie Dionne ◽  
Kristina M. Miller ◽  
Louis Bernatchez

Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon ( Salmo salar ) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.



2017 ◽  

AbstractIn evolutionary biology, bet-hedging refers to a strategy that reduces the variance of reproductive success at the cost of reduced mean reproductive success. In unpredictably fluctuating environments, bet-hedgers benefit from higher geometric mean fitness despite having lower arithmetic mean fitness than their specialist competitors. We examine the extent to which sexual reproduction can be considered a type of bet-hedging, by clarifying past arguments, examining parallels and differences to evolutionary games, and by presenting a simple model examining geometric and arithmetic mean payoffs of sexual and asexual reproduction. Sex typically has lower arithmetic mean fitness than asex, while the geometric mean fitness can be higher if sexually produced offspring are not identical. However, asexual individuals that are heterozygotes can gain conservative bet-hedging benefits of similar magnitude while avoiding the costs of sex. This highlights that bet-hedging always has to be specified relative to the payoff structure of relevant competitors. It also makes it unlikely that sex, at least when associated with significant male production, evolves solely based on bet-hedging in the context of frequently and repeatedly occupied environmental states. Future work could usefully consider bet-hedging in open-ended evolutionary scenarios with de novo mutations.



Evolution ◽  
2018 ◽  
Vol 73 (2) ◽  
pp. 145-157 ◽  
Author(s):  
Thomas Ray Haaland ◽  
Jonathan Wright ◽  
Jarle Tufto ◽  
Irja Ida Ratikainen


2020 ◽  
Vol 31 (5) ◽  
pp. 1120-1128 ◽  
Author(s):  
Michael A Pardo ◽  
Casey E Hayes ◽  
Eric L Walters ◽  
Walter D Koenig

Abstract In species with long-term social relationships, the ability to recognize individuals after extended separation and the ability to discriminate between former social affiliates that have died and those that have left the group but may return are likely to be beneficial. Few studies, however, have investigated whether animals can make these discriminations. We presented acorn woodpeckers (Melanerpes formicivorus), a group-living, cooperatively breeding bird, with playbacks of current group members, former group members still living nearby, former group members that had died or left the study area, and familiar nongroup members. Subjects responded more quickly to the calls of nongroup members than to the calls of current group members or former group members still living in the study area but did not discriminate between nongroup members and former group members that had died or disappeared. This suggests that acorn woodpeckers can vocally recognize both current group members and former group members that have dispersed to nearby groups and that they either forget former group members that no longer live in the vicinity or classify them differently from former group members that still live nearby. This study suggests an important role for vocal recognition in maintaining valuable relationships with social affiliates postdispersal.



2019 ◽  
Author(s):  
Thomas Ray Haaland ◽  
Jonathan Wright ◽  
Irja Ida Ratikainen

AbstractBet-hedging evolves in fluctuating environments because long-term genotype success is determined by geometric mean fitness across generations. However, specialist versus generalist strategies are usually considered in terms of arithmetic mean fitness benefits to individuals, as in habitat or foraging preferences. We model how environmental variability affects phenotypic variation within and among individuals to maximize either long-term arithmetic versus geometric mean fitness. For traits with additive fitness effects within lifetimes (e.g. foraging-related traits), genotypes of similar generalists or diversified specialists perform equally well. However, if fitness effects are multiplicative within lifetimes (e.g. sequential survival probabilities), generalist individuals are always favored, since geometric mean fitness favors greater within-individual phenotypic variation than arithmetic mean fitness does. Interestingly, this conservative bet-hedging effect outcompetes diversifying bet-hedging. These results link behavioral and ecological specialization and earlier models of bet-hedging, and thus apply to a range of natural phenomena from habitat choice to host specificity in parasites.Impact summaryWhich factors determine whether it is better to be a specialist or a generalist? Environmental fluctuations are becoming larger and more unpredictable across the globe as a result of human-induced rapid environmental change. A key challenge of evolutionary biology is therefore to understand how organisms adapt to such variation within and among generations, and currently represents a knowledge gap in evolutionary theory. Here we focus on how traits evolve when the (changing) environment determines the optimal value of a trait, so that the optimal trait value changes unpredictably over time. Our mathematical model investigates how much variation is optimal in a trait. We expect specialists (low within-individual trait variation) to be favored in stable environments, with generalists (high trait variation) favored in more variable environments. We show that the answer depends on whether we look from the point of view of the individual or all individuals of the same genotype. If an individual does well in the short term, but its offspring all experience a different environment and therefore do badly, the genotype as a whole is in trouble, and will not be favored in the long term. One solution to this problem could be to produce offspring with different trait values, to ensure that at least some of the offspring do well no matter the environmental conditions they grow up in. This “don’t put all your eggs in one basket” diversification strategy is well-known in some organisms, but how helpful is it if there is also some within-individual (i.e. generalist) trait variation? By answering these questions under various environmental scenarios, we link together many different concepts in evolutionary ecology and animal behavior, increasing our understanding about how organisms may cope with the current changes in environmental conditions around the world.



Genetics ◽  
1997 ◽  
Vol 146 (2) ◽  
pp. 471-479 ◽  
Author(s):  
Michael Travisano

The effect of environment on adaptation and divergence was examined in two sets of populations of Escherichia coli selected for 1000 generations in either maltose- or glucose-limited media. Twelve replicate populations selected in maltose-limited medium improved in fitness in the selected environment, by an average of 22.5%. Statistically significant among-population genetic variation for fitness was observed during the course of the propagation, but this variation was small relative to the fitness improvement. Mean fitness in a novel nutrient environment, glucose-limited medium, improved to the same extent as in the selected environment, with no statistically significant among-population genetic variation. In contrast, 12 replicate populations previously selected for 1000 generations in glucose-limited medium showed no improvement, as a group, in fitness in maltose-limited medium and substantial genetic variation. This asymmetric pattern of correlated responses suggests that small changes in the environment can have profound effects on adaptation and divergence.



2021 ◽  
Vol 75 (3) ◽  
Author(s):  
Eva H. Stredulinsky ◽  
Chris T. Darimont ◽  
Lance Barrett-Lennard ◽  
Graeme M. Ellis ◽  
John K. B. Ford

Abstract For animals that tend to remain with their natal group rather than individually disperse, group sizes may become too large to benefit individual fitness. In such cases, group splitting (or fission) allows philopatric animals to form more optimal group sizes without sacrificing all familiar social relationships. Although permanent group splitting is observed in many mammals, it occurs relatively infrequently. Here, we use combined generalized modeling and machine learning approaches to provide a comprehensive examination of group splitting in a population of killer whales (Orcinus orca) that occurred over three decades. Fission occurred both along and across maternal lines, where animals dispersed in parallel with their closest maternal kin. Group splitting was more common: (1) in larger natal groups, (2) when the common maternal ancestor was no longer alive, and (3) among groups with greater substructuring. The death of a matriarch did not appear to immediately trigger splitting. Our data suggest intragroup competition for food, leadership experience and kinship are important factors that influence group splitting in this population. Our approach provides a foundation for future studies to examine the dynamics and consequences of matrilineal fission in killer whales and other taxa. Significance statement Group living among mammals often involves long-term social affiliation, strengthened by kinship and cooperative behaviours. As such, changes in group membership may have significant consequences for individuals’ fitness and a population’s genetic structure. Permanent group splitting is a complex and relatively rare phenomenon that has yet to be examined in detail in killer whales. In the context of a growing population, in which offspring of both sexes remain with their mothers for life, we provide the first in-depth examination of group splitting in killer whales, where splitting occurs both along and across maternal lines. We also undertake the first comprehensive assessment of how killer whale intragroup cohesion is influenced by both external and internal factors, including group structure, population and group demography, and resource abundance.



Sign in / Sign up

Export Citation Format

Share Document