scholarly journals A cost for high levels of sperm competition in rodents: increased sperm DNA fragmentation

2016 ◽  
Vol 283 (1826) ◽  
pp. 20152708 ◽  
Author(s):  
Javier delBarco-Trillo ◽  
Olga García-Álvarez ◽  
Ana Josefa Soler ◽  
Maximiliano Tourmente ◽  
José Julián Garde ◽  
...  

Sperm competition, a prevalent evolutionary process in which the spermatozoa of two or more males compete for the fertilization of the same ovum, leads to morphological and physiological adaptations, including increases in energetic metabolism that may serve to propel sperm faster but that may have negative effects on DNA integrity. Sperm DNA damage is associated with reduced rates of fertilization, embryo and fetal loss, offspring mortality, and mutations leading to genetic disease. We tested whether high levels of sperm competition affect sperm DNA integrity. We evaluated sperm DNA integrity in 18 species of rodents that differ in their levels of sperm competition using the sperm chromatin structure assay. DNA integrity was assessed upon sperm collection, in response to incubation under capacitating or non-capacitating conditions, and after exposure to physical and chemical stressors. Sperm DNA was very resistant to physical and chemical stressors, whereas incubation in non-capacitating and capacitating conditions resulted in only a small increase in sperm DNA damage. Importantly, levels of sperm competition were positively associated with sperm DNA fragmentation across rodent species. This is the first evidence showing that high levels of sperm competition lead to an important cost in the form of increased sperm DNA damage.

Zygote ◽  
2019 ◽  
Vol 28 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Thais Rose dos Santos Hamilton ◽  
Mayra Elena Ortiz D’Ávila Assumpção

SummarySperm DNA fragmentation is referred to as one of the main causes of male infertility. Failures in the protamination process, apoptosis and action of reactive oxygen species (ROS) are considered the most important causes of DNA fragmentation. Action of ROS or changes in sperm protamination would increase the susceptibility of sperm DNA to fragmentation. Routine semen analysis is unable to estimate sperm chromatin damage. Sperm DNA integrity influences sperm functional capability, therefore tests that measure sperm DNA fragmentation are important to assess fertility disorders. Actually, there is a considerable number of methods for assessing sperm DNA fragmentation and chromatin integrity, sperm chromatin stability assay (SCSA modified), sperm chromatin dispersion (SCD), comet assay, transferase dUTP nick end labelling (TUNEL); and protamine evaluation in sperm chromatin assay, such as toluidine blue, CMA3, protamine expression and evaluation of cysteine radicals. This review aims to describe the main causes of sperm DNA fragmentation and the tests commonly used to evaluate sperm DNA fragmentation.


Biomonitoring ◽  
2015 ◽  
Vol 2 (1) ◽  
Author(s):  
Hueiwang Anna Jeng ◽  
Ruei-Nian Li ◽  
Wen-Yi Lin

Abstract:The present study aimed to investigate the relationship between semen quality parameters and DNA integrity, and determine whether semen quality parameters could serve as a reliable biomarker for monitoring sperm DNA damage. Conventional semen parameters from a total of 202 male human subjects were analyzed. DNA fragmentation and 8-oxo-7,8-dihydro-2′- deoxyguanosine (8-oxoGuo) were used to assess sperm DNA integrity. DNA fragmentation was analyzed by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and sperm chromatin structure assay (SCSA), while 8-oxodGuo was quantified by the liquid chromatography/tandem mass spectrometry (LC-MS/MS) coupled with an on-line solid phase system. The levels of 8-oxodGuo levels in sperm were related to the percentages of DNA fragmentation measured by both the TUNEL and SCSA (r = 0.22, p = 0.048; r = 0.12, p = 0.039). Sperm vitality, motility and morphology from all of the participants exhibited a weak correlation with the levels of 8-oxodGuo and the percentages of DNA fragmentation. Semen quality parameters may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Semen quality parameters may be insufficient to monitor sperm DNA fragmentation and oxidative damage. DNA damage in sperm is recommended to be included in routine measurements.


Reproduction ◽  
2013 ◽  
Vol 146 (5) ◽  
pp. 433-441 ◽  
Author(s):  
Renata Simões ◽  
Weber Beringui Feitosa ◽  
Adriano Felipe Perez Siqueira ◽  
Marcilio Nichi ◽  
Fabíola Freitas Paula-Lopes ◽  
...  

Sperm chromatin fragmentation may be caused by a number of factors, the most significant of which is reactive oxygen species. However, little is known about the effect of sperm oxidative stress (OS) on DNA integrity, fertilization, and embryonic development in cattle. Therefore, the goal of this study was to evaluate the influence of sperm OS susceptibility on the DNA fragmentation rate and in vitro embryo production (IVP) in a population of bulls. Groups of cryopreserved sperm samples were divided into four groups, based on their susceptibility to OS (G1, low OS; G2, average OS; G3, high OS; and G4, highest OS). Our results demonstrated that the sperm DNA integrity was compromised in response to increased OS susceptibility. Furthermore, semen samples with lower susceptibility to OS were also less susceptible to DNA damage (G1, 4.06%; G2, 6.09%; G3, 6.19%; and G4, 6.20%). In addition, embryo IVP provided evidence that the embryo cleavage rate decreased as the OS increased (G1, 70.18%; G2, 62.24%; G3, 55.85%; and G4, 50.93%), but no significant difference in the blastocyst rate or the number of blastomeres was observed among the groups. The groups with greater sensitivity to OS were also associated with a greater percentage of apoptotic cells (G1, 2.6%; G2, 2.76%; G3, 5.59%; and G4, 4.49%). In conclusion, we demonstrated that an increased susceptibility to OS compromises sperm DNA integrity and consequently reduces embryo quality.


2017 ◽  
Vol 9 (13) ◽  
pp. 136
Author(s):  
Farah Hanan Fathihah Jaafar ◽  
Khairul Osman ◽  
Jaya Kumar ◽  
Siti Fatimah Ibrahim

There is no solid conclusion on the conventional sperm parameters in association with alcohol consumption, evaluation of sperm DNA integrity thus become a more reliable parameter. Hereby, this literature search was performed to summarize alcohol consumption on the sperm DNA integrity. A computerized database search was done through MEDLINE via Ovid (since 1946 until August 2017) and Cochrane was used. The following set of keywords: ‘alcohol consumption OR alcohol intake OR alcohol diet OR drinking alcohol OR ethanol diet’ AND ‘sperm DNA OR sperm chromatin OR sperm genome OR sperm histone OR sperm protamine’ were utilised. 24 articles were retrieved where only five studies conform to the inclusion criteria All studies demonstrated a negative effect of alcohol consumption on sperm DNA integrity, regardless of various range of alcohol doses and duration of alcohol consumption. Out of five studies reviewed, four studies were using a different approach to measure the sperm DNA damage. Hereby, this review identified a need to use a single approach of DNA damage test by having various method of alcohol administration and/or vice versa so that the extension of sperm DNA damage to alcohol consumption will have a better conclusion. On the same note, a few studies have reported the reversibility on conventional semen parameters, none has been done on the sperm DNA damage upon alcohol withdrawal. Therefore, the role of alcohol withdrawal on the reversibility of sperm DNA damage needs to be as well investigated further.


2013 ◽  
Vol 85 (1) ◽  
pp. 8 ◽  
Author(s):  
Giuseppina Peluso ◽  
Alessandro Palmieri ◽  
Pietro Paolo Cozza ◽  
Giancarlo Morrone ◽  
Paolo Verze ◽  
...  

Introduction: Although the pathophysiology of the testicular damage associated with varicocele remains unclear, sperm DNA damage has been identified as a potential explanation for this cause of male infertility. The current study was designed to determine the extent of sperm nuclear DNA damage in patients with varicocele, and to examine its relationship with parameters of seminal motility. Materials and method: Semen samples from 60 patients with clinical varicocele and 90 infertile men without varicocele were examined. Varicocele sperm samples were classified as normal or pathological according to the 1999 World Health Organizzation guidelines. Sperm DNA damage was evalutated using the Halosperm kit, an improved Sperm Chromatin Dispersion (SCD) test. Results: The DNA fragmentation index (DFI: percentage of sperm with denatured nuclei) values was significantly higher in patients with varicocele, either with normal or abnormal (DFI 25.8 ± 3.2 vs 17.4 ± 2.8 - P < 0,01) semen profiles. In addition, an inverse correlation was found between spermatic motility and the degree of spermatic DNA fragmentation in patients with clinical varicocele. Conclusions: Varicocele is associated with high levels of DNA-damage in spermatozoa. In addition, in subjects with varicocele, abnormal spermatozoa motility is associated with higher levels of sperm DNA fragmentation. DNA fragmentation may therefore be an essential additional diagnostic test that should be recommended for patients with clinical varicocele.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Valeria Maria Iommiello ◽  
Elena Albani ◽  
Alessandra Di Rosa ◽  
Alessandra Marras ◽  
Francesca Menduni ◽  
...  

Oxidative stress (OS) plays an essential role in male infertility aetiology by affecting sperm quality, function, and also the integrity of sperm DNA. The assessment of oxidative stress in semen may be an important tool to improve the evaluation of sperm reproductive capacity. The purpose of this study was the evaluation of any possible relation between the unbalance of oxidative stress caused by superoxide anion in the ejaculate with the presence of sperm DNA fragmentation and high concentration of round cells. 56 semen samples from males from couples suffering from infertility were evaluated according to World Health Organisation (WHO) 2010 guidelines. Oxidative stress levels from N1 (low) to N4 (high) were assessed in ejaculates using oxiSperm; DFI (sperm DNA fragmentation index) as assessed by the SCSA (Sperm Chromatin Structure Assay) was used for evaluation of sperm chromatin integrity. Our data show that high oxidative stress (N3-N4 levels) correlated positively with aDFI≥30%(P=0.0379)and round cells≥1.500.000/mL(P=0.0084). In conclusion, OS increases sperm DNA damage. Thus evaluation of semen OS extent of sperm DNA damage in infertile man could be useful to develop new therapeutic strategies and improve success of assisted reproduction techniques (ART).


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Teoman Cem Kadioglu ◽  
Emin Aliyev ◽  
Murad Celtik

Background. Varicocele is associated with high levels of DNA damage in spermatozoa due to oxidative stress and elevated levels of sperm DNA fragmentation, which has been currently proposed to be an essential additional diagnostic test to be recommended for patients with clinical varicocele. The aim of this study was to evaluate the parameters of semen and the DNA fragmentation index (DFI) in patients with varicocele before and after varicocelectomy.Methods. The details of 92 consecutive patients were retrospectively analyzed from January 2010 to December 2012. The sperm samples were evaluated according to the World Health Organization Guidelines. Sperm DNA damage, characterized as DFI, was evaluated by sperm chromatin structure assay using flow cytometry.Results. There was a statistically significant improvement in the semen concentration, the total motile count, the total normal sperm count, and the sperm DNA fragmentation index (DFI; the percentage of sperm with denatured DNA) after varicocelectomy. There was a large decrease in DFI from a preoperative mean of 42.6% to a postoperative mean of 20.5% (P<0.001). A higher preoperative DFI was associated with a larger decrease in postoperative DFI, and significant negative correlations were observed between the DFI and sperm motility (r=-0.42,P<0.01).Conclusion. Our data suggest that varicocelectomy can improve multiple semen parameters and sperm DNA damage in infertile men with varicocele. The patients with preoperative defects in those parameters showed greater improvement postoperatively. Further research in this area is needed to understand the exact mechanisms of DNA damage in infertile men with varicocele.


2017 ◽  
Vol 29 (3) ◽  
pp. 630 ◽  
Author(s):  
S. D. Johnston ◽  
C. López-Fernández ◽  
F. Arroyo ◽  
J. L. Fernández ◽  
J. Gosálvez

Herein we report a method of assessing DNA fragmentation in the saltwater crocodile using the sperm chromatin dispersion test (SCDt) after including frozen–thawed spermatozoa in a microgel (Halomax; Halotech DNA, Madrid, Spain). Following controlled protein depletion, which included a reducing agent, sperm nuclei with fragmented DNA showed a homogeneous and larger halo of chromatin dispersion with a corresponding reduced nucleoid core compared with sperm with non-fragmented DNA. The presence of DNA damage was confirmed directly by incorporation of modified nucleotides using in situ nick translation (ISNT) and indirectly by studying the correlation of the SCDt with the results of DNA damage visualisation using a two-tailed comet assay (r = 0.90; P = 0.037). Results of the SCDt immediately following thawing and after 5 h incubation at 37°C in order to induce a range of DNA damage revealed individual crocodile differences in both the baseline level of DNA damage and DNA longevity.


2019 ◽  
Vol 26 (12) ◽  
pp. 1575-1581 ◽  
Author(s):  
Senay Cankut ◽  
Turgay Dinc ◽  
Mehmet Cincik ◽  
Guler Ozturk ◽  
Belgin Selam

Aim: Human sperm DNA fragmentation is one of the factors suggested for male infertility. The ratio of sperm DNA damage in semen may adversely affect both the fertilization rate and the embryo development of in vitro fertilization/ intracytoplasmic sperm injection cycles. Sperm cryopreservation both increases the success rates in assisted reproductive techniques (ARTs) and contributes to the preservation of fertility before testis surgery, chemotherapy, and radiotherapy. The aim of the current study is to determine sperm DNA fragmentation, following cryopreservation. Methods: A cross-sectional, observational study was conducted at a university hospital infertility clinic. One hundred (n = 100) volunteer fertile men (ages between 21 and 39 years) with normozoospermic sperm parameters were involved in the current study. Sperm DNA damage was evaluated with the Halosperm technique and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Fresh samples were studied in liquid form. The remaining samples were kept frozen and then thawed after 1 month and reevaluated with the Halosperm technique and TUNEL assay. Results were then compared between the fresh and frozen samples. Results: Sperm DNA fragmentation results with the Halosperm technique both before and after cryopreservation were 25% (5%-65%) and 40% (6%-89%), respectively, with a statistically significant increase (15%; P < .001). Sperm DNA fragmentation results by TUNEL assay before and after cryopreservation were 17% (3%-43%) and 36% (7%-94%), respectively, with a statistically significant increase (19%; P <.001). Conclusion: The current data demonstrate increased sperm DNA damage after cryopreservation. Further studies may contribute to development of less harmful techniques and cryoprotectants in order to improve the results of ART.


Sign in / Sign up

Export Citation Format

Share Document