scholarly journals Fear creates an Allee effect: experimental evidence from seasonal populations

2017 ◽  
Vol 284 (1857) ◽  
pp. 20170878 ◽  
Author(s):  
Kyle H. Elliott ◽  
Gustavo S. Betini ◽  
D. Ryan Norris

Allee effects driven by predation can play a strong role in the decline of small populations but are conventionally thought to occur when generalist predators target specific prey (i.e. type II functional response). However, aside from direct consumption, fear of predators could also increase vigilance and reduce time spent foraging as population size decreases, as has been observed in wild mammals living in social groups. To investigate the role of fear on fitness in relation to population density in a species with limited sociality, we exposed varying densities of Drosophila melanogaster to mantid predators either during an experimental breeding season or non-breeding season. The presence of mantids in either season decreased the reproductive performance of individuals but only at low breeding densities, providing evidence for an Allee effect. We then used our experimental results to parametrize a mathematical model to examine the population consequences of fear at low densities. Fear tended to destabilize population dynamics and increase the risk of extinction up to sevenfold. Our study provides unique experimental evidence that the indirect effects of the presence of predators can cause an Allee effect and has important consequences for our understanding of the dynamics of small populations.

2016 ◽  
Author(s):  
Meike J. Wittmann ◽  
Hanna Stuis ◽  
Dirk Metzler

SummaryIt is now widely accepted that genetic processes such as inbreeding depression and loss of genetic variation can increase the extinction risk of small populations. However, it is generally unclear whether extinction risk from genetic causes gradually increases with decreasing population size or whether there is a sharp transition around a specific threshold population size. In the ecological literature, such threshold phenomena are called “strong Allee effects” and they can arise for example from mate limitation in small populations.In this study, we aim to a) develop a meaningful notion of a “strong genetic Allee effect”, b) explore whether and under what conditions such an effect can arise from inbreeding depression due to recessive deleterious mutations, and c) quantify the interaction of potential genetic Allee effects with the well-known mate-finding Allee effect.We define a strong genetic Allee effect as a genetic process that causes a population’s survival probability to be a sigmoid function of its initial size. The inflection point of this function defines the critical population size. To characterize survival-probability curves, we develop and analyze simple stochastic models for the ecology and genetics of small populations.Our results indicate that inbreeding depression can indeed cause a strong genetic Allee effect, but only if individuals carry sufficiently many deleterious mutations (lethal equivalents) on average and if these mutations are spread across sufficiently many loci. Populations suffering from a genetic Allee effect often first grow, then decline as inbreeding depression sets in, and then potentially recover as deleterious mutations are purged. Critical population sizes of ecological and genetic Allee effects appear to be often additive, but even superadditive interactions are possible.Many published estimates for the number of lethal equivalents in birds and mammals fall in the parameter range where strong genetic Allee effects are expected. Unfortunately, extinction risk due to genetic Allee effects can easily be underestimated as populations with genetic problems often grow initially, but then crash later. Also interactions between ecological and genetic Allee effects can be strong and should not be neglected when assessing the viability of endangered or introduced populations.


2016 ◽  
Author(s):  
Gloria M. Lucque ◽  
Chloé Vayssade ◽  
Benoît Facon ◽  
Thomas Guillemaud ◽  
Franck Courchamp ◽  
...  

AbstractThe Allee effect is a theoretical model predicting low growth rates and the possible extinction of small populations. Historically, studies of the Allee effect have focused on demography. As a result, underlying processes other than the direct effect of population density on fitness components are not generally taken into account. There has been heated debate about the potential of genetic processes to drive small populations to extinction, but recent studies have shown that such processes clearly impact small populations over short time scales, and some may generate Allee effects. However, as opposed to the ecological Allee effect, which is underpinned by cooperative interactions between individuals, genetically driven Allee effects require a change in genetic structure to link the decline in population size with a decrease in fitness components. We therefore define the genetic Allee effect as a two-step process whereby a decrease in population size leads to a change in population genetic structure, and in turn, to a decrease in individual fitness. We describe potential underlying mechanisms, and review the evidence for this original type of component Allee effect, using published examples from both plants and animals. The possibility of considering demogenetic feedback in light of genetic Allee effects clarifies the analysis and interpretation of demographic and genetic processes, and the interplay between them, in small populations.


2019 ◽  
Author(s):  
Chris Robert Harrison Brown

Attention has long been characterised within prominent models as reflecting a competition between goal-driven and stimulus-driven processes. It remains unclear, however, how involuntary attentional capture by affective stimuli, such as threat-laden content, fits into such models. While such effects were traditionally held to reflect stimulus-driven processes, recent research has increasingly implicated a critical role of goal-driven processes. Here we test an alternative goal-driven account of involuntary attentional capture by threat, using an experimental manipulation of goal-driven attention. To this end we combined the classic ‘contingent capture’ and ‘emotion-induced blink’ (EIB) paradigms in an RSVP task with both positive or threatening target search goals. Across six experiments, positive and threat distractors were presented in peripheral, parafoveal, and central locations. Across all distractor locations, we found that involuntary attentional capture by irrelevant threatening distractors could be induced via the adoption of a search goal for a threatening category; adopting a goal for a positive category conversely led to capture only by positive stimuli. Our findings provide direct experimental evidence for a causal role of voluntary goals in involuntary capture by irrelevant threat stimuli, and hence demonstrate the plausibility of a top-down account of this phenomenon. We discuss the implications of these findings in relation to current cognitive models of attention and clinical disorders.


2021 ◽  
Vol 118 ◽  
pp. 102593
Author(s):  
Zina Moldoveanu ◽  
Hitoshi Suzuki ◽  
Colin Reily ◽  
Kenji Satake ◽  
Lea Novak ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Maria Cecilia Oliveira-Nunes ◽  
Glaucia Julião ◽  
Aline Menezes ◽  
Fernanda Mariath ◽  
John A. Hanover ◽  
...  

AbstractGlioblastoma (GBM) is a grade IV glioma highly aggressive and refractory to the therapeutic approaches currently in use. O-GlcNAcylation plays a key role for tumor aggressiveness and progression in different types of cancer; however, experimental evidence of its involvement in GBM are still lacking. Here, we show that O-GlcNAcylation plays a critical role in maintaining the composition of the GBM secretome, whereas inhibition of OGA activity disrupts the intercellular signaling via microvesicles. Using a label-free quantitative proteomics methodology, we identified 51 proteins in the GBM secretome whose abundance was significantly altered by activity inhibition of O-GlcNAcase (iOGA). Among these proteins, we observed that proteins related to proteasome activity and to regulation of immune response in the tumor microenvironment were consistently downregulated in GBM cells upon iOGA. While the proteins IGFBP3, IL-6 and HSPA5 were downregulated in GBM iOGA cells, the protein SQSTM1/p62 was exclusively found in GBM cells under iOGA. These findings were in line with literature evidence on the role of p62/IL-6 signaling axis in suppressing tumor aggressiveness and our experimental evidence showing a decrease in radioresistance potential of these cells. Taken together, our findings provide evidence that OGA activity may regulate the p62 and IL-6 abundance in the GBM secretome. We propose that the assessment of tumor status from the main proteins present in its secretome may contribute to the advancement of diagnostic, prognostic and even therapeutic tools to approach this relevant malignancy.


2021 ◽  
Vol 29 (1) ◽  
Author(s):  
Kamrun Nahar Keya ◽  
Md. Kamrujjaman ◽  
Md. Shafiqul Islam

AbstractIn this paper, we consider a reaction–diffusion model in population dynamics and study the impact of different types of Allee effects with logistic growth in the heterogeneous closed region. For strong Allee effects, usually, species unconditionally die out and an extinction-survival situation occurs when the effect is weak according to the resource and sparse functions. In particular, we study the impact of the multiplicative Allee effect in classical diffusion when the sparsity is either positive or negative. Negative sparsity implies a weak Allee effect, and the population survives in some domain and diverges otherwise. Positive sparsity gives a strong Allee effect, and the population extinct without any condition. The influence of Allee effects on the existence and persistence of positive steady states as well as global bifurcation diagrams is presented. The method of sub-super solutions is used for analyzing equations. The stability conditions and the region of positive solutions (multiple solutions may exist) are presented. When the diffusion is absent, we consider the model with and without harvesting, which are initial value problems (IVPs) and study the local stability analysis and present bifurcation analysis. We present a number of numerical examples to verify analytical results.


Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 2249-2258 ◽  
Author(s):  
Mark M Iles ◽  
Kevin Walters ◽  
Chris Cannings

AbstractIt is well known that an allele causing increased recombination is expected to proliferate as a result of genetic drift in a finite population undergoing selection, without requiring other mechanisms. This is supported by recent simulations apparently demonstrating that, in small populations, drift is more important than epistasis in increasing recombination, with this effect disappearing in larger finite populations. However, recent experimental evidence finds a greater advantage for recombination in larger populations. These results are reconciled by demonstrating through simulation without epistasis that for m loci recombination has an appreciable selective advantage over a range of population sizes (am, bm). bm increases steadily with m while am remains fairly static. Thus, however large the finite population, if selection acts on sufficiently many loci, an allele that increases recombination is selected for. We show that as selection acts on our finite population, recombination increases the variance in expected log fitness, causing indirect selection on a recombination-modifying locus. This effect is enhanced in those populations with more loci because the variance in phenotypic fitnesses in relation to the possible range will be smaller. Thus fixation of a particular haplotype is less likely to occur, increasing the advantage of recombination.


Sign in / Sign up

Export Citation Format

Share Document