scholarly journals Host–parasite fluctuating selection in the absence of specificity

2017 ◽  
Vol 284 (1866) ◽  
pp. 20171615 ◽  
Author(s):  
Alex Best ◽  
Ben Ashby ◽  
Andy White ◽  
Roger Bowers ◽  
Angus Buckling ◽  
...  

Fluctuating selection driven by coevolution between hosts and parasites is important for the generation of host and parasite diversity across space and time. Theory has focused primarily on infection genetics, with highly specific ‘matching-allele’ frameworks more likely to generate fluctuating selection dynamics (FSD) than ‘gene-for-gene’ (generalist–specialist) frameworks. However, the environment, ecological feedbacks and life-history characteristics may all play a role in determining when FSD occurs. Here, we develop eco-evolutionary models with explicit ecological dynamics to explore the ecological, epidemiological and host life-history drivers of FSD. Our key result is to demonstrate for the first time, to our knowledge, that specificity between hosts and parasites is not required to generate FSD. Furthermore, highly specific host–parasite interactions produce unstable, less robust stochastic fluctuations in contrast to interactions that lack specificity altogether or those that vary from generalist to specialist, which produce predictable limit cycles. Given the ubiquity of ecological feedbacks and the variation in the nature of specificity in host–parasite interactions, our work emphasizes the underestimated potential for host–parasite coevolution to generate fluctuating selection.

2015 ◽  
Vol 23 (1) ◽  
pp. 58-65 ◽  
Author(s):  
Imre Sándor Piross ◽  
Péter Fehérvári ◽  
Zoltán Vas ◽  
Szabolcs Solt ◽  
Éva Horváth ◽  
...  

Abstract Little is known about the louse species harboured by Red-footed and Amur Falcons despite the fact that various life-history traits of these hosts make them good model species to study host-parasite interactions. We collected lice samples from fully grown Amur (n=20) and Red-footed Falcons (n=59), and from nestlings of Red-footed Falcons (n=179) in four countries: Hungary, India, Italy and South Africa. We identified 3 louse species on both host species, namely Degeeriella rufa, Colpocephalum subzerafae and Laembothrion tinnunculi. The latter species has never been found on these hosts. Comparing population parameters of lice between hosts we found significantly higher prevalence levels of D. rufa and C. subzerafae on Amur Falcons. Adult Red-footed Falcons had higher D. rufa prevalence compared to C. subzerafae. For the first time we also show inter-annual shift in prevalence and intensity levels of these species on Red-footed Falcons; in 2012 on adult hosts C. subzerafae had higher intensity levels than D. rufa, however in 2014 D. rufa had significantly higher intensity compared to C. subzerafae. In case of nestlings both louse species had significantly higher preva lence levels than in 2014. The exact causes of such inter-annual shifts are yet to be understood.


PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7621 ◽  
Author(s):  
Carolyn Riddell ◽  
Sally Adams ◽  
Paul Schmid-Hempel ◽  
Eamonn B. Mallon

2020 ◽  
Vol 287 (1920) ◽  
pp. 20192386
Author(s):  
Frida Ben-Ami ◽  
Christian Orlic ◽  
Roland R. Regoes

Exposure to a pathogen primes many organisms to respond faster or more efficiently to subsequent exposures. Such priming can be non-specific or specific, and has been found to extend across generations. Disentangling and quantifying specific and non-specific effects is essential for understanding the genetic epidemiology of a system. By combining a large infection experiment and mathematical modelling, we disentangle different transgenerational effects in the crustacean model Daphnia magna exposed to different strains of the bacterial parasite Pasteuria ramosa . In the experiment, we exposed hosts to a high dose of one of three parasite strains, and subsequently challenged their offspring with multiple doses of the same (homologous) or a different (heterologous) strain. We find that exposure of Daphnia to Pasteuria decreases the susceptibility of their offspring by approximately 50%. This transgenerational protection is not larger for homologous than for heterologous parasite challenges. Methodologically, our work represents an important contribution not only to the analysis of immune priming in ecological systems but also to the experimental assessment of vaccines. We present, for the first time, an inference framework to investigate specific and non-specific effects of immune priming on the susceptibility distribution of hosts—effects that are central to understanding immunity and the effect of vaccines.


Parasitology ◽  
1998 ◽  
Vol 116 (S1) ◽  
pp. S47-S55 ◽  
Author(s):  
J. C. Koella ◽  
P. Agnew ◽  
Y. Michalakis

SummarySeveral recent studies have discussed the interaction of host life-history traits and parasite life cycles. It has been observed that the life-history of a host often changes after infection by a parasite. In some cases, changes of host life-history traits reduce the costs of parasitism and can be interpreted as a form of resistance against the parasite. In other cases, changes of host life-history traits increase the parasite's transmission and can be interpreted as manipulation by the parasite. Alternatively, changes of host's life-history traits can also induce responses in the parasite's life cycle traits. After a brief review of recent studies, we treat in more detail the interaction between the microsporidian parasite Edhazardia aedis and its host, the mosquito Aedes aegypti. We consider the interactions between the host's life-history and parasite's life cycle that help shape the evolutionary ecology of their relationship. In particular, these interactions determine whether the parasite is benign and transmits vertically or is virulent and transmits horizontally.Key words: host-parasite interaction, life-history, life cycle, coevolution.


Parasitology ◽  
1985 ◽  
Vol 90 (1) ◽  
pp. 205-216 ◽  
Author(s):  
D. J. Minchella

Over half of all living species of plants and animals are parasitic, which by definition involves intimate association with and unfavourable impact on hosts (Price, 1980). This paper will only consider parasites whose ‘unfavourable impact’ adversely affects the birth and/or mortality rates of their hosts (Anderson, 1978). Most organisms are potential hosts and must deal with the problem of parasitism. The probability of parasitic infection of a host is influenced by both environmental and genetic factors. Traditionally it was assumed that a host was either resistant or susceptible to a particular parasite and therefore the interaction between a parasite and potential host had only two possible outcomes: either the resistant host rebuffed the parasitic attack and remained uninfected or the parasite successfully invaded and significantly reduced the reproductive success of the susceptible host. This approach, however, ignored the intraspecific genetic variation present within both host and parasite populations (Wakelin, 1978). Since the outcome is determined by the interaction of a finite set of host genes and parasite genes, genetic variation in host susceptibility and parasite infectivity (Richards, 1976; Wakelin, 1978) suggests that more than two outcomes are possible. Variation in host and parasite genomes does not begin and end at the susceptibility/infectivity loci. Other genes may also influence the outcome of host–parasite interactions by altering the life-history patterns of hosts and parasites, and lead to a variety of outcomes.


2018 ◽  
Author(s):  
Frida Ben-Ami ◽  
Christian Orlic ◽  
Roland R. Regoes

AbstractExposure to a pathogen primes many organisms to respond faster or more efficiently to subsequent exposures. Such priming can be unspecific or specific, and has been found to extend across generations. Disentangling and quantifying specific and unspecific effects is essential for understanding the genetic epidemiology of a system. By combining a large infection experiment and mathematical modeling, we disentangle different transgenerational effects in the crustacean model Daphnia magna exposed to different strains of the bacterial parasite Pasteuria ramosa. In the experiments, we exposed hosts to a high-dose of one of three parasite strains, and subsequently challenged their offspring with multiple doses of the same or a different strain, i. e. homologously or heterogously. We find that exposure to Pasteuria decreases the susceptibility of a host’s offspring by approximately 50%. This transgenerational protection is not larger for homologous than for heterologous parasite challenges. Our work represents an important contribution not only to the analysis of immune priming in ecological systems, but also to the experimental assessment of vaccines. We present for the first time an inference framework to investigate specific and unspecific effects of immune priming on the susceptibility distribution of hosts — effects that are central to understanding immunity and the effect of vaccines.Author summaryImmune memory is a feature of immune systems that forms the basis of vaccination. In opposition to textbook accounts, the ability to specifically remember previous exposures has been found to extend to invertebrates and shown to be able to be passed on from mother to off-spring, i. e. to be transgenerational. In this paper, we investigate the extent of this specificity in unprecedented detail in water fleas. We exposed water flea mothers to different strains of a bacterial pathogen and challenged their offspring with a wide range of doses of a strain that were either identical to (homologous) or different from (heterologous) the strain, to which the mother had been exposed. We find that, while exposure of the mother reduces the susceptibility of the offspring, this effect is not specific. This work outlines the limits of specific transgenerational immune memory in this invertebrate system.


2015 ◽  
Vol 84 (3) ◽  
pp. 625-636 ◽  
Author(s):  
Brittany F. Sears ◽  
Paul W. Snyder ◽  
Jason R. Rohr

1991 ◽  
Vol 42 (6) ◽  
pp. 615 ◽  
Author(s):  
AJ Courtney

The prevalence of bopyrid isopods, parasitic on penaeid prawn hosts, is recorded for the first time from a central Queensland prawn trawl fishery. The bopyrid parasite Parapenaeon prox. expansus has been recorded for the first time from the red spot king prawn, Penaeus longistylus, and the blue-legged king prawn, Penaeus latisulcatus. Previous unpublished reports of Parapenaeon japonicum parasitizing P. longistylus have also been substantiated. Parasite species were not randomly associated with all prawn species but rather were associated with a single prawn host species or species group. The factors that give rise to such specific host-parasite associations, particularly the host-selective behaviour of the parasite and the habitat preferences of the juvenile prawns, are discussed. Bopyrids had no significant effect on the weight of the prawns, but they did have a significant effect on ovary weight and histology, causing sterility in their hosts. High levels of infestation have been recorded from other fisheries (resulting in reduced spawning potential of the host population), but the low prevalence (0.32%) of bopyrid parasites in central Queensland prawns appears to be so low as not to present a concern at present.


2006 ◽  
Vol 2 (3) ◽  
pp. 382-384 ◽  
Author(s):  
Gisep Rauch ◽  
Martin Kalbe ◽  
Thorsten B.H Reusch

Red Queen models of host–parasite coevolution are based on genotype by genotype host–parasite interactions. Such interactions require a genotype specific host defence and, simultaneously, a genotype specific parasite infectivity. Specificity is defined here as defence or infection ability successful against only a subset of genotypes of the same species. A specific defence depends on detectable genotypic variation on the parasite side and on a host defence mechanism that differentiates between parasite genotypes. In vertebrates, the MHC-based adaptive immune system can provide such a defence mechanism, but it needs at least several days to get fully mounted. In contrast, the innate immune system is immediately ready. The trematode parasite species used here reaches the immunologically protected eye lens of its three-spined stickleback ( Gasterosteus aculeatus ) host within 24 h. Thus, it disappears too fast for the fully mounted MHC-based adaptive immune system. In a complete cross-infection experiment using five fish-families and five parasite-clones, we found for the first time fish-family by parasite-clone interactions in vertebrates, although the parasite was only exposed to the immune system for maximally one day. Such interactions require a fast genotype specific defence, suggesting the importance of other defence mechanisms than the too slow, fully mounted adaptive immune system in vertebrates.


Sign in / Sign up

Export Citation Format

Share Document