scholarly journals Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes

2018 ◽  
Vol 285 (1888) ◽  
pp. 20180915 ◽  
Author(s):  
James T. Thorson ◽  
Mark D. Scheuerell ◽  
Julian D. Olden ◽  
Daniel E. Schindler

Variance of community abundance will be reduced relative to its theoretical maximum whenever population densities fluctuate asynchronously. Fishing communities and mobile predators can switch among fish species and/or fishing locations with asynchronous dynamics, thereby buffering against variable resource densities (termed ‘portfolio effects’, PEs). However, whether variation among species or locations represent the dominant contributor to PE remains relatively unexplored. Here, we apply a spatio-temporal model to multidecadal time series (1982–2015) for 20 bottom-associated fishes in seven marine ecosystems. For each ecosystem, we compute the reduction in variance over time in total biomass relative to its theoretical maximum if species and locations were perfectly correlated (total PE). We also compute the reduction in variance due to asynchrony among species at each location (species PE) or the reduction due to asynchrony among locations for each species (spatial PE). We specifically compute total, species and spatial PE in 10-year moving windows to detect changes over time. Our analyses revealed that spatial PE are stronger than species PE in six of seven ecosystems, and that ecosystems where species PE is constant over time can exhibit shifts in locations that strongly contribute to PE. We therefore recommend that spatial and total PE be monitored as ecosystem indicators representing risk exposure for human and natural consumers.

2019 ◽  
Vol 286 (1909) ◽  
pp. 20191578 ◽  
Author(s):  
Mallory Harris ◽  
Jamie M. Caldwell ◽  
Erin A. Mordecai

Between 2015 and 2017, Zika virus spread rapidly through populations in the Americas with no prior exposure to the disease. Although climate is a known determinant of many Aedes -transmitted diseases, it is currently unclear whether climate was a major driver of the Zika epidemic and how climate might have differentially impacted outbreak intensity across locations within Latin America. Here, we estimated force of infection for Zika over time and across provinces in Latin America using a time-varying susceptible–infectious–recovered model. Climate factors explained less than 5% of the variation in weekly transmission intensity in a spatio-temporal model of force of infection by province over time, suggesting that week to week transmission within provinces may be too stochastic to predict. By contrast, climate and population factors were highly predictive of spatial variation in the presence and intensity of Zika transmission among provinces, with pseudo- R 2 values between 0.33 and 0.60. Temperature, temperature range, rainfall and population size were the most important predictors of where Zika transmission occurred, while rainfall, relative humidity and a nonlinear effect of temperature were the best predictors of Zika intensity and burden. Surprisingly, force of infection was greatest in locations with temperatures near 24°C, much lower than previous estimates from mechanistic models, potentially suggesting that existing vector control programmes and/or prior exposure to other mosquito-borne diseases may have limited transmission in locations most suitable for Aedes aegypti , the main vector of Zika, dengue and chikungunya viruses in Latin America.


2016 ◽  
Vol 22 (10) ◽  
pp. 1327-1336 ◽  
Author(s):  
Niels Bergsland ◽  
Robert Zivadinov ◽  
Michael G Dwyer ◽  
Bianca Weinstock-Guttman ◽  
Ralph HB Benedict

Background: Deep gray matter (DGM) atrophy is common in multiple sclerosis (MS), but no studies have investigated surface-based structure changes over time with respect to healthy controls (HCs). Moreover, the relationship between cognition and the spatio-temporal evolution of DGM atrophy is poorly understood. Objectives: To explore DGM structural differences between MS and HCs over time in relation to neuropsychological (NP) outcomes. Methods: The participants were 44 relapsing-remitting and 20 secondary progressive MS patients and 22 HCs. All were scanned using 3T magnetic resonance imaging (MRI) at baseline and 3-year follow-up. NP examination emphasized consensus standard tests of processing speed and memory. We performed both volumetric and shape analysis of DGM structures and assessed their relationships with cognition. Results: Compared to HCs, MS patients presented with significantly smaller DGM volumes. For the thalamus and caudate, differences in shape were mostly localized along the lateral ventricles. NP outcomes were related to both volume and shape of the DGM structures. Over 3 years, decreased cognitive processing speed was related to localized atrophy on the anterior and superior surface of the left thalamus. Conclusions: These findings highlight the role of atrophy in the anterior nucleus of the thalamus and its relation to cognitive decline in MS.


Author(s):  
V. F. Carvalho ◽  
J. Silva ◽  
R. Kerr ◽  
A. B. Anderson ◽  
E. O. Bastos ◽  
...  

AbstractThis study presents two years of characterization of a warm temperate rhodolith bed in order to analyse how certain environmental changes influence the community ecology. The biomass of rhodoliths and associated species were analysed during this period and in situ experiments were conducted to evaluate the primary production, calcification and respiration of the dominant species of rhodoliths and epiphytes. The highest total biomass of rhodoliths occurred during austral winter. Lithothamnion crispatum was the most abundant rhodolith species in austral summer. Epiphytic macroalgae occurred only in January 2015, with Padina gymnospora being the most abundant. Considering associated fauna, the biomass of Mollusca increased from February 2015 to February 2016. Population densities of key reef fish species inside and around the rhodolith beds showed significant variations in time. The densities of grouper (carnivores/piscivores) increased in time, especially from 2015 to 2016. On the other hand, grunts (macroinvertebrate feeders) had a modest decrease over time (from 2014 to 2016). Other parameters such as primary production and calcification of L. crispatum were higher under enhanced irradiance, yet decreased in the presence of P. gymnospora. Community structure and physiological responses can be explained by the interaction of abiotic and biotic factors, which are driven by environmental changes over time. Biomass changes can indicate that herbivores play a role in limiting the growth of epiphytes, and this is beneficial to the rhodoliths because it decreases competition for environmental resources with fleshy algae.


VASA ◽  
2015 ◽  
Vol 44 (5) ◽  
pp. 355-362 ◽  
Author(s):  
Marie Urban ◽  
Alban Fouasson-Chailloux ◽  
Isabelle Signolet ◽  
Christophe Colas Ribas ◽  
Mathieu Feuilloy ◽  
...  

Abstract. Summary: Background: We aimed at estimating the agreement between the Medicap® (photo-optical) and Radiometer® (electro-chemical) sensors during exercise transcutaneous oxygen pressure (tcpO2) tests. Our hypothesis was that although absolute starting values (tcpO2rest: mean over 2 minutes) might be different, tcpO2-changes over time and the minimal value of the decrease from rest of oxygen pressure (DROPmin) results at exercise shall be concordant between the two systems. Patients and methods: Forty seven patients with arterial claudication (65 + / - 7 years) performed a treadmill test with 5 probes each of the electro-chemical and photo-optical devices simultaneously, one of each system on the chest, on each buttock and on each calf. Results: Seventeen Medicap® probes disconnected during the tests. tcpO2rest and DROPmin values were higher with Medicap® than with Radiometer®, by 13.7 + / - 17.1 mm Hg and 3.4 + / - 11.7 mm Hg, respectively. Despite the differences in absolute starting values, changes over time were similar between the two systems. The concordance between the two systems was approximately 70 % for classification of test results from DROPmin. Conclusions: Photo-optical sensors are promising alternatives to electro-chemical sensors for exercise oximetry, provided that miniaturisation and weight reduction of the new sensors are possible.


2007 ◽  
Author(s):  
Miranda Olff ◽  
Mirjam Nijdam ◽  
Kristin Samuelson ◽  
Julia Golier ◽  
Mariel Meewisse ◽  
...  

2010 ◽  
Author(s):  
Rebecca D. Stinson ◽  
Zachary Sussman ◽  
Megan Foley Nicpon ◽  
Allison L. Allmon ◽  
Courtney Cornick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document