scholarly journals A range-wide domino effect and resetting of the annual cycle in a migratory songbird

2019 ◽  
Vol 286 (1894) ◽  
pp. 20181916 ◽  
Author(s):  
Elizabeth A. Gow ◽  
Lauren Burke ◽  
David W. Winkler ◽  
Samantha M. Knight ◽  
David W. Bradley ◽  
...  

Latitudinal differences in timing of breeding are well documented but how such differences carry over to influence timing of events in the annual cycle of migratory birds is not well understood. We examined geographical variation in timing of events throughout the year using light-level geolocator tracking data from 133 migratory tree swallows ( Tachycineta bicolor ) originating from 12 North American breeding populations. A swallow's breeding latitude influenced timing of breeding, which then carried over to affect breeding ground departure. This resulted in subsequent effects on the arrival and departure schedules at autumn stopover locations and timing of arrival at non-breeding locations. This ‘domino effect’ between timing events was no longer apparent by the time individuals departed for spring migration. Our range-wide analysis demonstrates the lasting impact breeding latitude can have on migration schedules but also highlights how such timing relationships can reset when individuals reside at non-breeding sites for extended periods of time.

2019 ◽  
Vol 286 (1897) ◽  
pp. 20182821 ◽  
Author(s):  
Martins Briedis ◽  
Silke Bauer ◽  
Peter Adamík ◽  
José A. Alves ◽  
Joana S. Costa ◽  
...  

In many taxa, the most common form of sex-biased migration timing is protandry—the earlier arrival of males at breeding areas. Here we test this concept across the annual cycle of long-distance migratory birds. Using more than 350 migration tracks of small-bodied trans-Saharan migrants, we quantify differences in male and female migration schedules and test for proximate determinants of sex-specific timing. In autumn, males started migration about 2 days earlier, but this difference did not carry over to arrival at the non-breeding sites. In spring, males on average departed from the African non-breeding sites about 3 days earlier and reached breeding sitesca4 days ahead of females. A cross-species comparison revealed large variation in the level of protandry and protogyny across the annual cycle. While we found tight links between individual timing of departure and arrival within each migration season, only for males the timing of spring migration was linked to the timing of previous autumn migration. In conclusion, our results demonstrate that protandry is not exclusively a reproductive strategy but rather occurs year-round and the two main proximate determinants for the magnitude of sex-biased arrival times in autumn and spring are sex-specific differences in departure timing and migration duration.


The Auk ◽  
2019 ◽  
Vol 136 (4) ◽  
Author(s):  
Tara L Imlay ◽  
Frédéric Angelier ◽  
Keith A Hobson ◽  
Gabriela Mastromonaco ◽  
Sarah Saldanha ◽  
...  

Abstract Carry-over effects from one stage of the annual cycle to subsequent stages can have profound effects on individual fitness. In migratory birds, much research has been devoted to examining such effects from the nonbreeding to the breeding period. We investigated potential carry-over effects influencing spring body condition, breeding phenology, and performance for 3 species of sympatric, declining Nearctic–Neotropical migratory swallows: Bank Swallow (Riparia riparia), Barn Swallow (Hirundo rustica), and Cliff Swallow (Petrochelidon pyrrhonota). To examine carry-over effects, we used structural equation modeling and several intrinsic markers, including stable isotope (δ 2H, δ 13C, and δ 15N) and corticosterone (CORTf) values from winter molted-feathers, and changes in telomere length between breeding seasons. We found support for carry-over effects for all 3 species, however, the specific relationships varied between species and sexes. Effects leading to lower breeding performance were only observed in male Bank, female Barn, and female and male Cliff Swallows. In most cases, carry-over effects were attributed to differences in stable isotope values (most commonly with δ 2H) presumably related to differences in winter habitat use, but, for Cliff Swallows, negative carry-over effects were also linked to higher CORTf values and greater rates of telomere shortening. This work provides further support for the potential role of nonbreeding conditions on population declines, and indicates how multiple intrinsic markers can be used to provide information on ecological conditions throughout the annual cycle.


The Auk ◽  
2019 ◽  
Vol 136 (3) ◽  
Author(s):  
Samantha M Knight ◽  
Elizabeth A Gow ◽  
David W Bradley ◽  
Robert G Clark ◽  
Marc Bélisle ◽  
...  

Abstract There have been an increasing number of observations of itinerancy in migratory songbirds, where individuals move among 2 or more widely separated areas during the “stationary” nonbreeding season. Knowledge of such movements and an understanding of what drives them are important for predicting how migratory populations will respond to environmental change. In this study, we investigated nonbreeding movements of the Tree Swallow (Tachycineta bicolor), an aerial insectivore that breeds across North America and spends the nonbreeding season around the Gulf of Mexico, Florida, Mexico, Central America, and the Caribbean. With year-round tracking data obtained from 133 light-level geolocators deployed at 12 breeding sites ranging from Alaska to Nova Scotia to North Carolina, we show that 44% of individuals made at least one large-scale movement (range: 301–1,744 km) within the nonbreeding range. The frequency of itinerancy decreased with longitude, such that 75% of individuals made a movement in the western portion of the nonbreeding range compared to only 31% in the east. Using the Normalized Difference Vegetation Index (NDVI) as a proxy for resource availability, we found that when individuals did move, they were more likely to move from sites where resources were deteriorating faster (a more negative change in NDVI prior to departure) than their destination sites. There was also evidence that individuals moved to destination sites with higher NDVI and temperature in the autumn, but not in the winter. Our results suggest movements of Tree Swallows during the nonbreeding season are influenced by resource availability, but because not all individuals used multiple nonbreeding sites, the density of individuals at a site and the level of competition may have also been a factor influencing nonbreeding season movements.


2021 ◽  
Vol 76 (1) ◽  
Author(s):  
Linus Hedh ◽  
Juliana Dänhardt ◽  
Anders Hedenström

Abstract A common migratory pattern in birds is that northerly breeding populations migrate to more southerly non-breeding sites compared to southerly breeding populations (leap-frog migration). Not only do populations experience differences in migration distances, but also different environmental conditions, which may vary spatiotemporally within their annual cycles, creating distinctive selective pressures and migratory strategies. Information about such adaptations is important to understand migratory drivers and evolution of migration patterns. We use light-level geolocators and citizen science data on regional spring arrivals to compare two populations of common ringed plover Charadrius hiaticula breeding at different latitudes. We (1) describe and characterize the annual cycles and (2) test predictions regarding speed and timing of migration. The northern breeding population (NBP) wintered in Africa and the southern (SBP) mainly in Europe. The annual cycles were shifted temporally so that the NBP was always later in all stages. The SBP spent more than twice as long time in the breeding area, but there was no difference in winter. The NBP spent more time on migration in general. Spring migration speed was lower in the SBP compared to autumn speed of both populations, and there was no difference in autumn and spring speed in the NBP. We also found a larger variation in spring arrival times across years in the SBP. This suggests that a complex interaction of population specific timing and variation of breeding onset, length of breeding season, and proximity to the breeding area shape the annual cycle and migratory strategies. Significance statement Migration distance, climate, and the resulting composition of the annual cycle are expected to influence migration strategies and timing in birds. Testing theories regarding migration behaviours are challenging, and intraspecific comparisons over the full annual cycle are still rare. Here we compare the spatiotemporal distributions of two latitudinally separated populations of common ringed plovers using light-level geolocators. We found that there was a larger long-term variation in first arrival dates and that migration speed was slower only in spring in a temperate, short-distance migratory population, compared to an Arctic, long-distance migratory population. This suggests that a complex interaction of population specific timing and variation of breeding onset, length of breeding season and proximity to the breeding area shape the annual cycle and migratory behaviours.


2021 ◽  
Vol 9 ◽  
Author(s):  
Martha Maria Sander ◽  
Dan Chamberlain ◽  
Camille Mermillon ◽  
Riccardo Alba ◽  
Susanne Jähnig ◽  
...  

Timing reproduction to coincide with optimal environmental conditions is key for many organisms living in seasonal habitats. Advance in the onset of spring is a particular challenge to migratory birds that must time their arrival without knowing the conditions on the breeding grounds. This is amplified at high elevations where resource availability, which is linked to snowmelt and vegetation development, shows much annual variation. With the aim of exploring the effects of variability in the onset of local resource availability on reproduction, we compared key life history events in an Alpine population of the Northern Wheatear (Oenanthe oenanthe) between years of contrasting timing of snowmelt. Based on remote sensed images, we identified 2020 as an exceptionally early snowmelt and green-up year compared to the preceding year and the long-term average. Individuals tracked with light-level geolocators arrived well before the snowmelt in 2020 and clutch initiation dates across the population were earlier in 2020 compared to 2019. However, observations from a citizen science database and nest monitoring data showed that the arrival-breeding interval was shorter in 2020, thus the advance in timing lagged behind the environmental conditions. While hatching success was similar in both years, fledging success was significantly reduced in 2020. A trophic mismatch in early 2020 could be a possible explanation for the reduced reproductive success, but alternative explanations cannot be excluded. Our results show that, despite the timely arrival at the breeding grounds and a contraction of the arrival-breeding interval, Wheatears were not able to advance breeding activities in synchrony with environmental conditions in 2020. Earlier reproductive seasons are expected to become more frequent in the future. We show that the negative effects of changing seasons in Alpine migratory birds might be similar to birds breeding at high latitudes, despite their shorter migratory distance.


2011 ◽  
Vol 279 (1730) ◽  
pp. 1008-1016 ◽  
Author(s):  
Anders P. Tøttrup ◽  
Raymond H. G. Klaassen ◽  
Roine Strandberg ◽  
Kasper Thorup ◽  
Mikkel Willemoes Kristensen ◽  
...  

The small size of the billions of migrating songbirds commuting between temperate breeding sites and the tropics has long prevented the study of the largest part of their annual cycle outside the breeding grounds. Using light-level loggers (geolocators), we recorded the entire annual migratory cycle of the red-backed shrike Lanius collurio , a trans-equatorial Eurasian-African passerine migrant. We tested differences between autumn and spring migration for nine individuals. Duration of migration between breeding and winter sites was significantly longer in autumn (average 96 days) when compared with spring (63 days). This difference was explained by much longer staging periods during autumn (71 days) than spring (9 days). Between staging periods, the birds travelled faster during autumn (356 km d –1 ) than during spring (233 km d –1 ). All birds made a protracted stop (53 days) in Sahelian sub-Sahara on southbound migration. The birds performed a distinct loop migration (22 000 km) where spring distance, including a detour across the Arabian Peninsula, exceeded the autumn distance by 22 per cent. Geographical scatter between routes was particularly narrow in spring, with navigational convergence towards the crossing point from Africa to the Arabian Peninsula. Temporal variation between individuals was relatively constant, while different individuals tended to be consistently early or late at different departure/arrival occasions during the annual cycle. These results demonstrate the existence of fundamentally different spatio-temporal migration strategies used by the birds during autumn and spring migration, and that songbirds may rely on distinct staging areas for completion of their annual cycle, suggesting more sophisticated endogenous control mechanisms than merely clock-and-compass guidance among terrestrial solitary migrants. After a century with metal-ringing, year-round tracking of long-distance migratory songbirds promises further insights into bird migration.


The Auk ◽  
2020 ◽  
Vol 137 (2) ◽  
Author(s):  
Catie M Porro ◽  
Martha J Desmond ◽  
Julie A Savidge ◽  
Fitsum Abadi ◽  
Kirsten K Cruz-McDonnell ◽  
...  

Abstract Migratory birds are demonstrating changes in phenology linked to climate change. Understanding these changes requires connecting events that occur over the multiple regions occupied during their annual cycle. The Burrowing Owl (Athene cunicularia) is a species of concern in North America, with pronounced declines in regions of the Great Plains. Using a dataset that spanned 10 breeding sites from South Dakota to northern Mexico in various years during 1989–2017, we observed both advances and delays in nesting along with increasing variation in nest initiation dates. We examined the effects of a large-scale climate system (El Niño Southern Oscillation), drought, and local weather patterns throughout the annual cycle as potential predictors of early and late nesting. Moisture conditions during the winter and spring migratory period had the greatest influence on nest phenology. Years with more intense drought on winter and migratory grounds increased the probability of nests initiating late relative to early. Correspondingly, wet conditions were associated with an increased probability of early nest initiation. Drought likely has cascading ecological effects that negatively influence food abundance for Burrowing Owls, resulting in delays in the ability of individuals to meet energetic demands required for migration. How climate change will impact Burrowing Owl phenology is important considering a projected increase in the magnitude and frequency of drought and declining owl population trends.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260339
Author(s):  
Bryan D. Watts ◽  
Fletcher M. Smith ◽  
Chance Hines ◽  
Laura Duval ◽  
Diana J. Hamilton ◽  
...  

Many long-distance migratory birds use habitats that are scattered across continents and confront hazards throughout the annual cycle that may be population-limiting. Identifying where and when populations spend their time is fundamental to effective management. We tracked 34 adult whimbrels (Numenius phaeopus) from two breeding populations (Mackenzie Delta and Hudson Bay) with satellite transmitters to document the structure of their annual cycles. The two populations differed in their use of migratory pathways and their seasonal schedules. Mackenzie Delta whimbrels made long (22,800 km) loop migrations with different autumn and spring routes. Hudson Bay whimbrels made shorter (17,500 km) and more direct migrations along the same route during autumn and spring. The two populations overlap on the winter grounds and within one spring staging area. Mackenzie Delta whimbrels left the breeding ground, arrived on winter grounds, left winter grounds and arrived on spring staging areas earlier compared to whimbrels from Hudson Bay. For both populations, migration speed was significantly higher during spring compared to autumn migration. Faster migration was achieved by having fewer and shorter stopovers en route. We identified five migratory staging areas including four that were used during autumn and two that were used during spring. Whimbrels tracked for multiple years had high (98%) fidelity to staging areas. We documented dozens of locations where birds stopped for short periods along nearly all migration routes. The consistent use of very few staging areas suggests that these areas are integral to the annual cycle of both populations and have high conservation value.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kristen A. Mancuso ◽  
Megan A. Fylling ◽  
Christine A. Bishop ◽  
Karen E. Hodges ◽  
Michael B. Lancaster ◽  
...  

Abstract Background For many songbirds in North America, we lack movement details about the full annual cycle, notably outside the breeding season. Understanding how populations are linked spatially between breeding and overwintering periods (migratory connectivity) is crucial to songbird conservation and management. We assessed migratory connectivity for 2 breeding populations of Gray Catbirds (Dumetella carolinensis) west of and within the Rocky Mountains by determining migration routes, stopover sites, and overwintering locations. Additionally, we compared apparent annual survivorship for both populations. Methods We deployed 39 archival light-level geolocators and 21 Global Positioning System (GPS) tags on catbirds in the South Okanagan Valley, British Columbia, Canada, and 32 geolocators and 52 GPS tags in the Bitterroot River Valley, Montana, USA. These devices allowed us to determine migration routes, stopover sites, overwintering locations, and migratory connectivity. Migratory connectivity was quantified using Mantel’s correlation. We used mark-recapture of colour banded catbirds in both sites to estimate apparent annual survivorship. Results We retrieved 6 geolocators and 19 GPS tags with usable data. Gray Catbirds from both populations passed through the Rocky Mountains eastward before heading south towards their overwintering locations in northeastern Mexico and Texas. Stopover sites during fall migration occurred primarily in Montana, Kansas, Oklahoma, and Arkansas. Overwintering locations spanned Texas and 5 states in northeastern Mexico. Individual catbirds used up to 4 distinct sites during the overwintering period. Catbirds separated by almost 500 km during the breeding season overlapped during the non-breeding season, suggesting weak migratory connectivity among western populations (Mantel’s correlation = 0.013, P-value = 0.41). Catbird apparent annual survivorship estimates were higher in British Columbia (0.61 ± 0.06 females; 0.64 ± 0.05 males) than in Montana (0.34 ± 0.05 females; 0.43 ± 0.04 males), though the main driver of these differences remain unclear. Conclusions Our results provide high precision geographic details during the breeding, migration, and overwintering phases of the annual cycle for western Gray Catbirds. Notably, we found that western catbirds followed the Central Flyway as opposed to the Pacific Flyway. We document that catbirds used multiple sites over winter, contrary to the popular belief that this phase of the annual cycle is stationary for most songbirds.


2018 ◽  
Vol 115 (14) ◽  
pp. E3192-E3200 ◽  
Author(s):  
Gunnar R. Kramer ◽  
David E. Andersen ◽  
David A. Buehler ◽  
Petra B. Wood ◽  
Sean M. Peterson ◽  
...  

Migratory species can experience limiting factors at different locations and during different periods of their annual cycle. In migratory birds, these factors may even occur in different hemispheres. Therefore, identifying the distribution of populations throughout their annual cycle (i.e., migratory connectivity) can reveal the complex ecological and evolutionary relationships that link species and ecosystems across the globe and illuminate where and how limiting factors influence population trends. A growing body of literature continues to identify species that exhibit weak connectivity wherein individuals from distinct breeding areas co-occur during the nonbreeding period. A detailed account of a broadly distributed species exhibiting strong migratory connectivity in which nonbreeding isolation of populations is associated with differential population trends remains undescribed. Here, we present a range-wide assessment of the nonbreeding distribution and migratory connectivity of two broadly dispersed Nearctic-Neotropical migratory songbirds. We used geolocators to track the movements of 70Vermivorawarblers from sites spanning their breeding distribution in eastern North America and identified links between breeding populations and nonbreeding areas. Unlike blue-winged warblers (Vermivora cyanoptera), breeding populations of golden-winged warblers (Vermivora chrysoptera) exhibited strong migratory connectivity, which was associated with historical trends in breeding populations: stable for populations that winter in Central America and declining for those that winter in northern South America.


Sign in / Sign up

Export Citation Format

Share Document