scholarly journals Evidence of sperm removal behaviour in an externally fertilizing species and compensatory behaviour for the risk of self-sperm removal

2020 ◽  
Vol 287 (1937) ◽  
pp. 20202004
Author(s):  
Takeshi Takegaki ◽  
Ayako Nakanishi ◽  
Yosuke Kanatani ◽  
Shoma Kawase ◽  
Masa-aki Yoshida ◽  
...  

The removal of rival sperm from a female's sperm storage organ acts as a strong sperm competition avoidance mechanism, which has been reported only in internally fertilizing species and not at all in externally fertilizing species. This study demonstrated for the first time that nest-holding males of Bathygobius fuscus , an externally fertilizing marine fish, remove the sperm of rival sneaker males from the spawning nest by exhibiting tail-fanning behaviour within the nest. Males showed tail-fanning behaviour when semen was artificially injected into the nest but not when seawater was injected, and in open nests this behaviour resulted in higher paternity rates for the focal male. The sperm removal behaviour entails the risk of removing their own sperm; therefore, additional sperm release behaviour is likely necessary to benefit from the sperm removal effect. Consistent with this, males increased post-fanning sperm release behaviour more in the semen than in the seawater injection treatment. Moreover, males who had removed sperm for a longer time spent more time releasing sperm after the removal, suggesting that the additional sperm release behaviour compensated for the loss of their own sperm. These results suggest that sperm removal behaviour is not restricted to internally fertilizing organisms and deserves further investigation in this and other species.

2008 ◽  
Vol 86 (11) ◽  
pp. 1244-1251 ◽  
Author(s):  
Ronald Chase ◽  
Emily Darbyson

The sperm storage organ of terrestrial gastropod molluscs is implicated in sexual selection because it has a complex structure and it functions in a context of intense sperm competition. Received sperm are stored in spermathecal tubules. In our sample using the brown garden snail ( Cornu aspersum (Müller, 1774)) (n = 58), the mean number of tubules per animal was 16, with lengths ranging from ≤40 to 2480 μm. A hereditary influence on tubule number was indicated by clutch-dependent variations. From histological sections, we counted the spermatozoa that were present in the tubules of ex-virgin snails 1, 2, 4, and 8 weeks after mating (n = 40). Sperm were distributed, on average, across 75% of the tubules in individual snails, thus contradicting one proposed mechanism for cryptic female choice. The total number of sperm declined 66% over 8 weeks, with the largest losses incurred by sperm in the lumens of the tubules and sperm gathered in clusters. By contrast, in the same period, the numbers of sperm that were in contact with the walls of the tubules remained relatively stable. These data imply that sperm survive best when attached to the epithelial wall, either because they derive nutrition from the epithelium or because they use the epithelium as an anchor.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Akashdeep Dhillon ◽  
Tabashir Chowdhury ◽  
Yolanda E. Morbey ◽  
Amanda J. Moehring

Abstract Background Sperm storage plays a key role in the reproductive success of many sexually-reproducing organisms, and the capacity of long-term sperm storage varies across species. While there are theoretical explanations for why such variation exists, to date there are no controlled empirical tests of the reproductive consequences of additional long-term sperm storage. While Dipterans ancestrally have three long-term sperm organs, known as the spermathecae, Drosophila contain only two. Results We identified a candidate gene, which we call spermathreecae (sp3), in which a disruption cause the development of three functional spermathecae rather than the usual two in Drosophila. We used this disruption to test the reproductive consequences of having an additional long-term sperm storage organ. Compared to females with two spermathecae, females with three spermathecae store a greater total number of sperm and can produce offspring a greater length of time. However, they did not produce a greater total number of offspring. Conclusions Thus, additional long-term sperm storage in insects may increase female fitness through extending the range of conditions where she produces offspring, or through increasing the quality of offspring via enhanced local sperm competition at fertilization.


2020 ◽  
Vol 22 ◽  
Author(s):  
Shannon L Summers ◽  
Akito Y Kawahara ◽  
Ana P. S. Carvalho

Male mating plugs have been used in many species to prevent female re-mating and sperm competition. One of the most extreme examples of a mating plug is the sphragis, which is a large, complex and externalized plug found only in butterflies. This structure is found in many species in the genus Acraea (Nymphalidae) and provides an opportunity for investigation of the effects of the sphragis on the morphology of the genitalia, which is poorly understood. This study aims to understand morphological interspecific variation in the genitalia of Acraea butterflies. Using specimens from museum collections, abdomen dissections were conducted on 19 species of Acraea: 9 sphragis bearing and 10 non-sphragis bearing species. Genitalia imaging was performed for easier comparison and analysis and measurements of genitalia structures was done using ImageJ software. Some distinguishing morphological features in the females were found. The most obvious difference is the larger and more externalized copulatory opening in sphragis bearing species, with varying degrees of external projections. Females of the sphragis bearing species also tend to have a shorter ductus (the structure that connects the copulatory opening with the sperm storage organ) than those without the sphragis. These differences may be due to a sexually antagonistic coevolution between the males and females, where the females evolve larger and more difficult to plug copulatory openings and the males attempt to prevent re-mating with the sphragis.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Lenka Sentenská ◽  
Aileen Neumann ◽  
Yael Lubin ◽  
Gabriele Uhl

Abstract Background Mating generally occurs after individuals reach adulthood. In many arthropods including spiders, the adult stage is marked by a final moult after which the genitalia are fully developed and functional. In several widow spider species (genus Latrodectus), however, immature females may mate a few days before they moult to adulthood, i.e. in their late-subadult stage. While the “adult” mating typically results in cannibalism, males survive the “immature” mating. During both “immature” and “adult” matings, males leave parts of their paired copulatory organs within female genitalia, which may act as mating plugs. To study potential costs and benefits of the two mating tactics, we investigated female genital morphology of the brown widow spider, L. geometricus. Light microscopy, histology and micro-computed tomography of early-subadult, late-subadult and adult females were conducted to determine the overall pattern of genital maturation. We compared genitalia of mated late-subadult and adult females to reveal potential differences in the genitalic details that might indicate differential success in sperm transfer and different environments for sperm storage and sperm competition. Results We found that the paired sperm storage organs (spermathecae) and copulatory ducts are developed already in late-subadult females and host sperm after immature mating. However, the thickness of the spermathecal cuticle and the staining of the secretions inside differ significantly between the late-subadult and adult females. In late-subadult females mating plugs were found with higher probability in both spermathecae compared to adult females. Conclusions Sperm transfer in matings with late-subadult females follows the same route as in matings with adult females. The observed differences in the secretions inside the spermathecae of adult and late-subadult females likely reflect different storage conditions for the transferred sperm which may lead to a disadvantage under sperm competition if the subadult female later re-mates with another male. However, since males mating with late-subadult females typically transfer sperm to both spermathecae they might benefit from numerical sperm competition as well as from monopolizing access to the female sperm storage organs. The assessment of re-mating probability and relative paternity will clarify the costs and benefits of the two mating tactics in light of these findings.


2021 ◽  
Author(s):  
Marco Demont ◽  
Paul I Ward ◽  
Wolf U Blanckenhorn ◽  
Stefan Lüpold ◽  
Oliver Y Martin ◽  
...  

Abstract Precise mechanisms underlying sperm storage and utilization are largely unknown, and data directly linking stored sperm to paternity remain scarce. We used competitive microsatellite PCR to study the effects of female morphology, copula duration and oviposition on the proportion of stored sperm provided by the second of two copulating males (S2) in Scathophaga stercoraria (Diptera: Scathophagidae), the classic model for sperm competition studies. We genotyped all offspring from potentially mixed-paternity clutches to establish the relationship between a second male’s stored sperm (S2) and paternity success (P2). We found consistent skew in sperm storage across the three female spermathecae, with relatively more second-male sperm stored in the singlet spermatheca than in the doublet spermathecae. S2 generally decreased with increasing spermathecal size, consistent with either heightened first-male storage in larger spermathecae, or less efficient sperm displacement in them. Additionally, copula duration and several two-way interactions influenced S2, highlighting the complexity of postcopulatory processes and sperm storage. Importantly, S2 and P2 were strongly correlated. Manipulation of the timing of oviposition strongly influenced observed sperm-storage patterns, with higher S2 when females laid no eggs before being sacrificed than when they oviposited between copulations, an observation consistent with adaptive plasticity in insemination. Our results identified multiple factors influencing sperm storage, nevertheless suggesting that the proportion of stored sperm is strongly linked to paternity (i.e., a fair raffle). Even more detailed data in this vein are needed to evaluate the general importance of sperm competition relative to cryptic female choice in postcopulatory sexual selection.


2006 ◽  
Vol 274 (1607) ◽  
pp. 209-217 ◽  
Author(s):  
Leif Engqvist ◽  
Klaus Reinhold

Sperm competition theory predicts that when males are certain of sperm competition, they should decrease sperm investment in matings with an increasing number of competing ejaculates. How males should allocate sperm when competing with differently sized ejaculates, however, has not yet been examined. Here, we report the outcomes of two models assuming variation in males' sperm reserves and males being faced with different amounts of competing sperm. In the first ‘spawning model’, two males compete instantaneously and both are able to assess the sperm competitive ability of each other. In the second ‘sperm storage model’, males are sequentially confronted with situations involving different levels of sperm competition, for instance different amounts of sperm already stored by the female mating partner. In both of the models, we found that optimal sperm allocation will strongly depend on the size of the male's sperm reserve. Males should always invest maximally in competition with other males that are equally strong competitors. That is, for males with small sperm reserves, our model predicts a negative correlation between sperm allocation and sperm competition intensity, whereas for males with large sperm reserves, this correlation is predicted to be positive.


2020 ◽  
pp. 332-363
Author(s):  
Carola Becker ◽  
Raymond T. Bauer

In polyandrous mating systems, females mate multiple times and males have evolved adaptations for sperm competition which increase the number and fitness of their offspring. Mate guarding is a widespread monopolization strategy in groups where female receptivity is temporally restricted and often associated with the molt. Precopulatory guarding occurs in branchipods, copepods, peracarids and decapods. Postcopulatory guarding is notable in numerous brachyurans with males protecting females until her exoskeleton has hardened. During copulation, male success in fertilization depends on an effective sperm transfer mechanism, the precise placement of ejaculates closest to where female gametes are fertilized. Male copulatory systems are highly diverse and strongly adapted to these tasks, especially the structures that interact with the female genital ducts. The elaborate tips of brachyuran gonopods are supposed to act in the displacement, possibly even in the removal of rival sperm masses; however, sperm removal is only evident in crayfish: males eat spermatophores previously deposited by other males. During copulation of several crustacean groups, males transfer secretions that harden and form a sealant. These sperm plugs, plaques and gel layers may protect their own sperm, prevent remating or seal off rival sperm from the site of fertilization. Several groups of isopods and decapods have internal insemination, elaborate sperm storage organs and some exhibit internal fertilization. The intensity of sperm competition increases with the latency between the processes of insemination and fertilization. This chapter gives on overview on mate guarding, male sealants and the anatomical adaptations to sperm competition in crustaceans. We also briefly discuss the consequences of multiple matings for the genetic diversity of broods, i.e., single vs. multiple paternities. There is still a lack of data for many crustacean groups. Moreover, it is often hard to assess how successful a male strategy to ensure paternity actually is as many studies focus on either the behavioral, anatomical, or molecular aspects, while comprehensive multi-level studies on crustacean sperm competition are virtually absent from the literature.


Sign in / Sign up

Export Citation Format

Share Document