scholarly journals An asynchronous Mesozoic marine revolution: the Cenozoic intensification of predation on echinoids

2021 ◽  
Vol 288 (1947) ◽  
Author(s):  
Elizabeth Petsios ◽  
Roger W. Portell ◽  
Lyndsey Farrar ◽  
Shamindri Tennakoon ◽  
Tobias B. Grun ◽  
...  

Predation traces found on fossilized prey remains can be used to quantify the evolutionary history of biotic interactions. Fossil mollusc shells bearing these types of traces provided key evidence for the rise of predation during the Mesozoic marine revolution (MMR), an event thought to have reorganized global marine ecosystems. However, predation pressure on prey groups other than molluscs has not been explored adequately. Consequently, the ubiquity, tempo and synchronicity of the MMR cannot be thoroughly assessed. Here, we expand the evolutionary record of biotic interactions by compiling and analysing a new comprehensively collected database on drilling predation in Meso-Cenozoic echinoids. Trends in drilling frequency reveal an Eocene rise in drilling predation that postdated echinoid infaunalization and the rise in mollusc-targeted drilling (an iconic MMR event) by approximately 100 Myr. The temporal lag between echinoid infaunalization and the rise in drilling frequencies suggests that the Eocene upsurge in predation did not elicit a coevolutionary or escalatory response. This is consistent with rarity of fossil samples that record high frequency of drilling predation and scarcity of fossil prey recording failed predation events. These results suggest that predation intensification associated with the MMR was asynchronous across marine invertebrate taxa and represented a long and complex process that consisted of multiple uncoordinated steps probably with variable coevolutionary responses.

Paleobiology ◽  
2019 ◽  
Vol 45 (4) ◽  
pp. 517-530 ◽  
Author(s):  
Geerat J. Vermeij

AbstractHistorians have debated whether pathways and events from the past to the present are influenced largely by contingency, the dependence of outcomes on particular prior conditions, or whether there is long-term emergent directional change. Previous arguments for predictability in evolutionary history relied on the high frequency of convergence, but the repeated evolution of widely favored adaptations need not imply long-term directionality. Using evidence from the fossil record and arguments concerning the metabolic evolution of organisms, I show here that power (total energy taken up and expended per unit time) has increased stepwise over time at ecosystem-level and global scales thanks to the ratchet-like, cumulative effects of competition and cooperation and to the disproportionate influence of powerful top competitors and opportunistic species on emergent ecosystem properties and processes. The history of life therefore exhibits emergent directionality at large ecosystem-wide scales toward greater power.


Author(s):  
Jacek Szwedo

ABSTRACTThis paper outlines and discusses the fossil record of the Hemiptera – the fifth most diverse insect order. The diversity of these insects in comparison with the “Big Four” group is given, together with a short history of its classification. Updated information is presented about the fossil record of particular families, with a brief analysis. The main evolutionary traits of the major Hemiptera lineages are briefly described. The influence of biotic interactions with endosymbionts, shaping the evolution of the hemipterans as well as abiotic events and major global changes, is disputed. The innovations and perils of the evolutionary history of the Hemiptera are presented.


Author(s):  
Manuela Aiglstorfer ◽  
Philipe Havlik ◽  
Yanina Herrera

Abstract Thalattosuchia, a clade of Mesozoic aquatic crocodyliforms, were the only archosaurs that ever became fully adapted to marine ecosystems. They are represented by two clades, the semiaquatic teleosauroids and the metriorhynchoids, which include fully pelagic forms. So far, little is known on the early evolutionary history of Metriorhynchoidea and data are sparse, especially from the early Middle Jurassic. Opisuchus meieri gen. et sp. nov. a metriorhynchoid crocodyliform from the early Aalenian (early Middle Jurassic) of southern Germany, is described here. It is one of the most complete specimens of a non-metriorhynchid metriorhynchoid, and the best-preserved thalattosuchian described from the Aalenian. The new taxon is represented by a nearly complete skull, which has a unique combination of characters distinguishing it from other species of Metriorhynchoidea. It displays a mosaic of plesiomorphic and apomorphic morphological features that sheds new light on early metriorhynchoid evolution. This taxon is an important puzzle piece, which will help to better track the mosaic character distribution in Thalattosuchia.


Paleobiology ◽  
2015 ◽  
Vol 41 (1) ◽  
pp. 187-201 ◽  
Author(s):  
Adiël A. Klompmaker ◽  
Patricia H. Kelley

AbstractPredation is an important process in modern oceans and in the evolutionary history of marine ecosystems. Consequently, it has been hypothesized that shelled prey modified their ornamentation in response to predation. However, bivalve ornamentation has also been argued to be important in maintaining a stable life position in the sediment and in burrowing. To test whether concentric ribs were effective against drilling by carnivorous gastropods, we examined drill hole position and completeness for four Cenozoic bivalve species that differ in rib strength (Astarte radiata,A. goldfussi,Lirophora glyptocyma, andL. latilirata). The percentage of drill holes located between the ribs increases with increasing rib strength, whereas the percentage of drill holes on top of ribs decreases. This result suggests that gastropods select the drill hole site more effectively as rib strength increases, thereby saving time and energy, and that natural selection favors gastropods that select drill hole sites between ribs. Because of this greater stereotypy, the percentage of drill holes that are incomplete is generally lower in strongly ribbed species. The proportion of drill holes located on top of ribs is greater for incomplete than complete holes, implying that ribs can be effective against predators, but only when selected as the drilling location. We show that ribs are most effective against drilling predation for bivalves with moderately sized ribs, between which gastropods have difficulty siting drill holes. Concentric ribs are unlikely to have evolved as an adaptation against drilling predation because concentric ribs evolved in the Paleozoic and were already common in the Mesozoic, whereas drilling frequency increased later, in the Late Cretaceous–Paleogene. Moreover, rib strength of North AmericanAstartedid not change through this time interval. Thus, the ribs considered here are a likely exaptation to drilling given their effectiveness at deterring drilling predation on bivalves with moderate ribs.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e82410 ◽  
Author(s):  
Azusa Kinjo ◽  
Tomoko Koito ◽  
So Kawaguchi ◽  
Koji Inoue

2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Sign in / Sign up

Export Citation Format

Share Document