Storm surges in the North Sea, 11 to 30 December 1954

The disturbances produced by the stormy conditions of December 1954 have been analyzed. The basic data used were tidal observations at ten British and fifteen continental stations in the North Sea and English Channel, together with records of the mean flow of water through the Straits of Dover as represented by electromagnetically induced currents in a telephone cable running from St Margaret’s Bay to Sangatte. The main purpose of the investigation has been to determine the relative magnitudes of the various factors contributing to the phenomena. The effect of westerly winds has been shown to depend upon whether the wind system is confined to the North Sea, or to the north-western approaches to the sea, or is a broad airstream covering both areas. Evidence has been put forward for the existence of a 'return’ surge, or southward return of water previously expelled from the North Sea, on 15 December. Co-disturbance charts have been constructed for the large surges of 20 to 25 December, and the water movements thus deduced exhibit marked geostrophic effects in all cases. An example of an external surge has been noted. Representing the sea by a rectangle, a correlation of 0-96 was found between the longitudinal water gradient and the geostrophic wind; this analysis led to a value of the wind stress coefficient, y 2 , of 2-7 x 10- 3 . The transverse gradient has been shown to be composed of a direct wind effect and a larger geostrophic effect. Estimates have been made of the mean level of the sea which, during surge peaks, was some 2-5 ft. above normal, and these have been represented satisfactorily by winds in and to the north of the sea. The cable measurements throughout the whole period have been analyzed at intervals of 25 h, and, after Bowden (1956), provided estimates of y2 (2-1 x 10- 3 ) and the bottom friction coefficient k (3-5 x 10- 3 ). A similar analysis of the data at 3 h intervals gave values of 2-3 x 10~3 and 4-5 x 10“3, respectively. The subject of the oscillatory development of storm surges has been reviewed with particular reference to the North Sea, and the conclusion reached that for this area the motion appears to be so heavily damped that positive surges may be represented, for practical purposes, by equilibrium conditions modified by a time lag. Negative surges, however, exhibit a strong tendency towards oscillations, as evidenced by the existence of return surges

Author(s):  
D. Prandle

An estimate is made of the mean value of residual flow through the Dover Strait for each month over the 24–year period from 1949 to 1972. The estimates are based on results from a modelling investigation by Prandle (1978) where it was shown that the residual flow consists of three components, (a) a tidal residual, (b), a wind-driven residual and (c) a flow due to a long-term gradient in mean sea level. The components (a) and (c) are assumed to be constant and the value of (b) is deduced using wind data recorded by Dutch Light Vessels located in the southern North Sea.The mean flow over the whole period amounts to 155 × 103 m3 s–1 into the North Sea with a maximum value of 364 x 103 m3 s–1 and a minimum of – 15 × 103 m3 s–1 (out of the North Sea). One notable feature of the complete time series is the surprisingly small variation in the annual mean flows; perhaps this stability in the annual flow is of significance to the marine biology of the area.The validity of the computed time series is established by reference to comparable data including a 9–year record, from cross-channel submarine cables, of the potential induced by the flow of water through the Earth's magnetic field. Additional comparisons are also made with the results of a previous study of daily-mean flows.


Records of sea level for several North Sea ports for the winter of 1953-4 have been in vestigated. They were split into 14-day intervals, and each 14-day record was Fourieranalyzed to determine if any non-astronomical periods were present. There was evidence of some activity between 40 and 50 h period, and a determination of the phase angles at different ports showed that the activity could be due to a disturbance travelling southwards from the north of the North Sea. The disturbance was partly reflected somewhere near the line from Lowestoft to Flushing, so that one part returned past Flushing and Esbjerg towards Bergen while the other part travelled towards Dover, and there was evidence of its existence on the sea-current records taken near St Margaret's Bay. These results were confirmed by subtracting the predicted astronomical tidal levels from the observed values of sea level and cross-correlating the residuals so obtained for each port with those found at Lowestoft. The residuals at Lowestoft and Aberdeen were compared with the meteorological conditions, and it was found that, although they could be attributed to a large extent to conditions within the North Sea, there was an additional effect due to a travelling surge which was of the same order of magnitude at both Lowestoft and Aberdeen and which was closely related to the rate of change with time of the atmospheric pressure difference between Wick and Bergen.


2021 ◽  
Author(s):  
Simin Jin ◽  
David Kemp ◽  
David Jolley ◽  
Manuel Vieira ◽  
Chunju Huang

<p>The Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma) was the most marked climate warming event of the Cenozoic, and a potentially useful deep time analogue for understanding environmental responses to anthropogenic carbon emissions and associated warming. The response of sedimentary systems to the large-scale climate changes of the PETM are, however, still uncertain. Here, we present an extremely thick (~140 m) record of the PETM in cores from a well in the North Sea, offshore UK. In this well, a thick Paleocene-Eocene interval is developed owing to uplift of the East Shetland Platform in the late Paleocene. Carbon isotope data through this well, coupled with detailed sedimentological analysis, show that the PETM interval is contemporaneous with >200 sandstone turbidites layers. Mud deposition without turbidites dominated sedimentation below and above the PETM. These observations support previous work from other localities highlighting how climate warming during the PETM likely drove substantial changes in hydrological cycling, erosion and sediment supply. Spectral analysis of turbidite recurrence in the PETM interval suggests that the abundance of turbidites was modulated in part by ~21 kyr astronomical precession climate cycles, further emphasizing a potential climatic control on turbidite sedimentation. In detail, we note a kiloyear-scale time lag between onset of the PETM carbon isotope excursion and the appearance of turbidites in the succession, highlighting a delay between PETM carbon release and warming and the basin-wide response in sediment supply.</p>


Ocean Science ◽  
2009 ◽  
Vol 5 (3) ◽  
pp. 369-378 ◽  
Author(s):  
A. Sterl ◽  
H. van den Brink ◽  
H. de Vries ◽  
R. Haarsma ◽  
E. van Meijgaard

Abstract. The height of storm surges is extremely important for a low-lying country like The Netherlands. By law, part of the coastal defence system has to withstand a water level that on average occurs only once every 10 000 years. The question then arises whether and how climate change affects the heights of extreme storm surges. Published research points to only small changes. However, due to the limited amount of data available results are usually limited to relatively frequent extremes like the annual 99%-ile. We here report on results from a 17-member ensemble of North Sea water levels spaning the period 1950–2100. It was created by forcing a surge model of the North Sea with meteorological output from a state-of-the-art global climate model which has been driven by greenhouse gas emissions following the SRES A1b scenario. The large ensemble size enables us to calculate 10 000 year return water levels with a low statistical uncertainty. In the one model used in this study, we find no statistically significant change in the 10 000 year return values of surge heights along the Dutch during the 21st century. Also a higher sea level resulting from global warming does not impact the height of the storm surges. As a side effect of our simulations we also obtain results on the interplay between surge and tide.


Author(s):  
John C. Roff ◽  
Ken Middlebrook ◽  
Frank Evans

All groups of meso- and macro-zooplankton in the North Sea off Northumberland, at a depth of 53 m, were studied during a 15-year period (1969–83); copepod productivity was estimated from biomass and growth rates. Phytoplankton were seasonally bi-modal with peaks in April and August–October; copepods were uni-modal peaking in June–July. The predatory zooplankters: larval fish, decapods, ctenophores, medusae (the summer-autumn predators) peaked between May and September, while chaetognaths and euphausiids (the winter predators) peaked in December–January. Copepods and the summer-autumn predators were seasonally and inter-annually positively correlated, and declined in abundance from 1974 to 1980. Euphausiids and chaetognaths on the contrary increased in abundance during these years, and were seasonally and inter-annually negatively correlated to the copepods. The mean annual abundance of copepods was positively related to the previous winter's minimum, and inversely related to the abundance of chaetognaths and euphausiids. Annual copepod productivity averaged 1260 kJ m-2 year-1, and showed no relationship to other groups of plankton.


2011 ◽  
Vol 1 (5) ◽  
pp. 34
Author(s):  
J. B. Schijf

The North Sea is a shallow sea and therefore it is very sensitive to wind effects. As a result the water levels along the coasts are, in addition to the tidal oscillations subject to a considerable wind setup and exceptionally severe gales throughout history have been accompanied by inundations of the low-lying regions bordering the North Sea, in particular its southern part. No stretch of coast has suffered more than that belonging to the Netherlands and the adjacent parts of Belgium and North Western Germany. Several factors combine to bestow on us this doubtful privilege.


1978 ◽  
Vol 48 (1) ◽  
pp. 16-28 ◽  
Author(s):  
W.L. van Utrecht

Data and material are collected from 106 Harbour Porpoises (P. phocoena) from the southern part of the North Sea. All animals are accidentally caught or found stranded. The greatest length for males in the sample is 151 cm, for females 186 cm. For detailed analysis of body measurements, 30 males and 37 females are selected, while from 20 males and 34 females teeth are used for age analysis. The analysis of the body measurements shows sexual dimorphism in the anterior and posterior part of the back, in the flukes and flippers and in the position of the genital slit. The maximum number of dentinal layers found in the teeth is 12. Males attain sexual maturity after the deposition of 5 dentinal layers, females when 6 layers are formed, at a body length of about 135 cm and 150 cm, respectively. Some evidence is found that the population of P. phocoena from the North Sea has a lower growth rate than the population from Canadian waters. The gestation period is estimated to be eleven months, the peak of the birth period being in June. The animals are born at a length varying between 67 cm to 80 cm. Growth of the visceral organs is isogonic. The mean weight of the organs is greater in females than in males.


Author(s):  
Robert Muir Wood ◽  
William Bateman

Around the coasts of the southern North Sea, flood risk is mediated everywhere by the performance of natural and man-made flood defences. Under the conditions of extreme surge with tide water levels, the performance of the defences determines the extent of inland flooding. Sensitivity tests reveal the enormous increase in the volume of water that can pass through a defence once breaching is initiated, with a 1 m reduction in sill elevation doubling the loss. Empirical observations of defence performance in major storm surges around the North Sea reveal some of the principal controls on breaching. For the same defence type, the maximum size and depth of a breach is a function of the integral of the hydraulic gradient across the defence, which is in turn determined by the elevation of the floodplain and the degree to which water can continue to flow inland away from the breach. The most extensive and lowest floodplains thereby ‘generate’ the largest breaches. For surges that approach the crest height, the weaker the protection of the defence, the greater the number of breaches. Defence reinforcement reduces both the number and size of the breaches.


2013 ◽  
Vol 13 (8) ◽  
pp. 2017-2029 ◽  
Author(s):  
S. F. Kew ◽  
F. M. Selten ◽  
G. Lenderink ◽  
W. Hazeleger

Abstract. The low-lying Netherlands is at risk from multiple threats of sea level rise, storm surges and extreme river discharges. Should these occur simultaneously, a catastrophe will be at hand. Knowledge about the likelihood of simultaneous occurrence or the so-called "compound effect" of such threats is essential to provide guidance on legislation for dike heights, flood barrier design and water management in general. In this study, we explore the simultaneous threats of North Sea storm surges and extreme Rhine river discharge for the current and future climate in a large 17-member global climate model ensemble. We use a simple approach, taking proxies of north-northwesterly winds over the North Sea and multiple~day precipitation averaged over the Rhine basin for storm surge and discharge respectively, so that a sensitivity analysis is straightforward to apply. By investigating soft extremes, we circumvent the need to extrapolate the data and thereby permit the model's synoptic development of the extreme events to be inspected. Our principle finding based on the climate model data is that, for the current climate, the probability of extreme surge conditions following extreme 20-day precipitation sums is around 3 times higher than that estimated from treating extreme surge and discharge probabilities as independent, as previously assumed. For the future climate (2070–2100), the assumption of independence cannot be rejected, at least not for precipitation sums exceeding 7 days.


Sign in / Sign up

Export Citation Format

Share Document