Melting of the mantle past and present: isotope and trace element evidence

Estimates are made of the abundances of some lithophile trace elements, particularly heat-producing elements, in the bulk Earth. The applicability of abundance estimates based on extra-terrestrial analogues, and terrestrial heat flow data are discussed. Sr, Nd and Pb isotope data are briefly reviewed and used to identify basalt source regions in the mantle which have been depleted or enriched in these and other lithophile trace elements. An assessment is made of the role of silicate liquid transfer in the production of depleted mantle. The timing of the transfer event(s) can be constrained using Rb-Sr, Sm-Nd and U-Pb isotope data and cover the period of Earth history during which granitic crust has been stabilized. Calculations of the heat production in the source regions of mid-ocean ridge and other basalts suggest that the convective processes involved in the generation of oceanic lithosphere are driven mainly by heating from beneath, as the internal heat generation is comparatively small. Trace element data from Archaean to Recent volcanics are used to estimate maximum limits on the amount of mantle melting which has occurred in the last 3.5 Ga.

2020 ◽  
Vol 61 (2) ◽  
Author(s):  
Aaron Wolfgang Ashley ◽  
Michael Bizimis ◽  
Anne H Peslier ◽  
Matthew Jackson ◽  
Jasper G Konter

Abstract Water influences geodynamic processes such as melting, deformation and rheology, yet its distribution in the oceanic upper mantle is primarily known indirectly from melt inclusions and glasses of erupted mantle melts (i.e. mid-ocean ridge and ocean island basalts). To better constrain the mechanisms influencing the distribution of H2O in the mantle, particularly regarding the role of metasomatism, we analyzed 15 peridotite xenoliths from Savai‘i and two dunite xenoliths from Ta‘ū (Samoa) for structural H2O (by polarized Fourier transform infrared spectroscopy), and major and trace element concentrations. Clinopyroxenes from the Ta‘ū dunites show trace element concentrations consistent with equilibration with their host lavas, but lower H2O contents than expected. Savai‘i peridotites are highly depleted harzburgites (melt depletion ≥17 %). They show strong evidence of transient metasomatism by both carbonatite and silicate melts, with highly variable Ti and Zr depletions and light rare earth element enrichments. However, despite metasomatism the H2O concentrations in olivines (0 − 4 ppm H2O) and orthopyroxenes (17 − 89 ppm H2O) are among the lowest reported in oceanic xenoliths, but higher than expected for the estimated degree of depletion. In general, H2O concentrations vary less than those of other incompatible trace elements in these samples. Transects across mineral grains show generally homogeneous distributions of H2O, indicating no significant H2O loss or gain during ascent. Raman spectroscopy on inclusions in minerals shows the presence of CO2 but an absence of molecular H2O. This agrees with the absence of H2O concentration variations between inclusion-rich and -poor domains in minerals. The above data can be explained by transient metasomatism along grain boundaries, now recorded as planes of inclusions within annealed grains. Fast diffusion of hydrogen (but not lithophile elements) from the inclusions into the host mineral phase will simultaneously enrich H2O contents across the grain and lower them in the inclusion-rich domains. The result is highly variable metasomatism recorded in lithophile elements, with smaller magnitude H2O variations that are decoupled from lithophile element metasomatism. Comparison with xenoliths from Hawai‘i shows that evidence for metasomatism from lithophile elements alone does not imply rehydration of the oceanic lithosphere. Instead, H2O concentrations depend on the overall amount of H2O added to the lithosphere through metasomatism, and the proximity of sampled material to areas of melt infiltration in the lithosphere.


Author(s):  
Jixin Wang ◽  
Huaiyang Zhou ◽  
Vincent J M Salters ◽  
Henry J B Dick ◽  
Jared J Standish ◽  
...  

Abstract Mantle source heterogeneity and magmatic processes have been widely studied beneath most parts of the Southwest Indian Ridge (SWIR). But less is known from the newly recovered mid-ocean ridge basalts from the Dragon Bone Amagmatic Segment (53°E, SWIR) and the adjacent magmatically robust Dragon Flag Segment. Fresh basalt glasses from the Dragon Bone Segment are clearly more enriched in isotopic composition than the adjacent Dragon Flag basalts, but the trace element ratios of the Dragon Flag basalts are more extreme compared with average mid-ocean ridge basalts (MORB) than the Dragon Bone basalts. Their geochemical differences can be explained only by source differences rather than by variations in degree of melting of a roughly similar source. The Dragon Flag basalts are influenced by an arc-like mantle component as evidenced by enrichment in fluid-mobile over fluid-immobile elements. However, the sub-ridge mantle at the Dragon Flag Segment is depleted in melt component compared with a normal MORB source owing to previous melting in the subarc. This fluid-metasomatized, subarc depleted mantle is entrained beneath the Dragon Flag Segment. In comparison, for the Dragon Bone axial basalts, their Pb isotopic compositions and their slight enrichment in Ba, Nb, Ta, K, La, Sr and Zr and depletion in Pb and Ti concentrations show resemblance to the Ejeda–Bekily dikes of Madagascar. Also, Dragon Bone Sr and Nd isotopic compositions together with the Ce/Pb, La/Nb and La/Th ratios can be modeled by mixing the most isotopically depleted Dragon Flag basalts with a composition within the range of the Ejeda–Bekily dikes. It is therefore proposed that the Dragon Bone axial basalts, similar to the Ejeda–Bekily dikes, are sourced from subcontinental lithospheric Archean mantle beneath Gondwana, pulled from beneath the Madagascar Plateau. The recycling of the residual subarc mantle and the subcontinental lithospheric mantle could be related to either the breakup of Gondwana or the formation and accretion of Neoproterozoic island arc terranes during the collapse of the Mozambique Ocean, and is now present beneath the ridge.


1998 ◽  
Vol 89 (2) ◽  
pp. 95-111 ◽  
Author(s):  
R. J. Preston ◽  
M. J. Hole ◽  
J. Still ◽  
H. Patton

AbstractSub-silicic to silicic pitchstones are widespread throughout the British Tertiary Igneous Province (BTIP), with examples being found at all the major igneous centres. Both highly porphyritic and almost completely aphyric varieties occur, and take the form of sills, dykes and lava flows. Here we present previously unreported mineral chemistry data on phenocryst and microcrystallite populations from a number of pitchstones from throughout the BTIP. Phenocryst assemblages are completely anhydrous, comprising mixtures of plagioclase, sanidine, fayalite, orthopyroxene, pigeonite, ferroaugite, ferrohedenbergite and quartz. Microcrystallite assemblages are also diverse, consisting of sanidine, ferrohedenbergite, fayalite and, occasionally, almost pure end-member ferrosilite, as well as hydrous phases such as ferrohornblende and biotite. Textural and mineral chemistry observations support interpretations derived from whole-rock and residual glass major element analyses, together with whole-rock trace element and the available Sr-Nd-Pb isotope data, that the Tertiary pitchstones of Scotland are either the products of intimate mixing between a range of basaltic magmas with hydrous crustal melts, or were formed by the crustal contamination of basaltic magmas.


2019 ◽  
Vol 60 (12) ◽  
pp. 2483-2508 ◽  
Author(s):  
R Tribuzio ◽  
G Manatschal ◽  
M R Renna ◽  
L Ottolini ◽  
A Zanetti

Abstract The Jurassic Chenaillet ophiolite in the Western Alps consists of a gabbro–mantle association exhumed to the seafloor through detachment faulting and partly covered by basaltic lavas. One of the Chenaillet gabbroic bodies includes mylonites that are transected by a network of felsic veins, thereby testifying to the interplay of ductile shearing and magma emplacement. The deformed gabbros preserve clinopyroxene porphyroclasts of primary magmatic origin, which are typically mantled by amphibole (titanian edenite) and minor secondary clinopyroxene. Titanian edenite and secondary clinopyroxene also occur as fine-grained syn-kinematic phases locally associated with fine-grained plagioclase. The felsic veins are made up of anorthite-poor plagioclase and minor titanian edenite. Geothermometric investigations document that the ductile gabbro deformation and the crystallization of the felsic veins occurred at 765 ± 50 °C and 800 ± 55 °C, respectively. With respect to undeformed counterparts, the deformed gabbros are variably enriched in SiO2 and variably depleted in Mg/(Mg + Fetot2+) and Ca/(Ca + Na). In addition, the deformed gabbros show relatively high concentrations of incompatible trace elements such as rare earth elements (REE), Y, Zr and Nb. The felsic veins are characterized by low Mg/(Mg + Fetot2+) and Ca/(Ca + Na), high SiO2 and high concentrations of incompatible trace elements. Relict clinopyroxene porphyroclasts from the deformed gabbros display a rather primitive, mid-ocean ridge-type geochemical signature, which contrasts with the trace element fingerprint of titanian edenite from both the deformed gabbros and the felsic veins. For instance, titanian edenite typically has relatively high REE abundances, with chondrite-normalized REE patterns characterized by a pronounced negative Eu anomaly. A similar trace element signature is shown by secondary clinopyroxene from the deformed gabbros. Amphibole from both the deformed gabbros and the felsic veins displays high F/Cl values. We show that the SiO2-rich hydrous melts feeding the felsic veins were involved in the high-temperature gabbro deformation and that melt–gabbro reactions led to major and trace element metasomatism of the deforming gabbros.


Author(s):  
Beñat Oliveira ◽  
Juan Carlos Afonso ◽  
Romain Tilhac

Abstract Besides standard thermo-mechanical conservation laws, a general description of mantle magmatism requires the simultaneous consideration of phase changes (e.g. from solid to liquid), chemical reactions (i.e. exchange of chemical components) and multiple dynamic phases (e.g. liquid percolating through a deforming matrix). Typically, these processes evolve at different rates, over multiple spatial scales and exhibit complex feedback loops and disequilibrium features. Partially as a result of these complexities, integrated descriptions of the thermal, mechanical and chemical evolution of mantle magmatism have been challenging for numerical models. Here we present a conceptual and numerical model that provides a versatile platform to study the dynamics and nonlinear feedbacks inherent in mantle magmatism and to make quantitative comparisons between petrological and geochemical datasets. Our model is based on the combination of three main modules: (1) a Two-Phase, Multi-Component, Reactive Transport module that describes how liquids and solids evolve in space and time; (2) a melting formalism, called Dynamic Disequilibirum Melting, based on thermodynamic grounds and capable of describing the chemical exchange of major elements between phases in disequilibrium; (3) a grain-scale model for diffusion-controlled trace-element mass transfer. We illustrate some of the benefits of the model by analyzing both major and trace elements during mantle magmatism in a mid-ocean ridge-like context. We systematically explore the effects of mantle potential temperature, upwelling velocity, degree of equilibrium and hetererogeneous sources on the compositional variability of melts and residual peridotites. Our model not only reproduces the main thermo-chemical features of decompression melting but also predicts counter-intuitive differentiation trends as a consequence of phase changes and transport occurring in disequilibrium. These include a negative correlation between Na2O and FeO in melts generated at the same Tp and the continued increase of the melt’s CaO/Al2O3 after Cpx exhaustion. Our model results also emphasize the role of disequilibrium arising from diffusion for the interpretation of trace-element signatures. The latter is shown to be able to reconcile the major- and trace-element compositions of abyssal peridotites with field evidence indicating extensive reaction between peridotites and melts. The combination of chemical disequilibrium of major elements and sluggish diffusion of trace elements may also result in weakened middle rare earth to heavy rare earth depletion comparable with the effect of residual garnet in mid-ocean ridge basalt, despite its absence in the modelled melts source. We also find that the crystallization of basalts ascending in disequilibrium through the asthenospheric mantle could be responsible for the formation of olivine gabbros and wehrlites that are observed in the deep sections of ophiolites. The presented framework is general and readily extendable to accommodate additional processes of geological relevance (e.g. melting in the presence of volatiles and/or of complex heterogeneous sources, refertilization of the lithospheric mantle, magma channelization and shallow processes) and the implementation of other geochemical and isotopic proxies. Here we illustrate the effect of heterogeneous sources on the thermo-mechanical-chemical evolution of melts and residues using a mixed peridotite–pyroxenite source.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 447 ◽  
Author(s):  
Mandy Krebs ◽  
Matthew Hardman ◽  
David Pearson ◽  
Yan Luo ◽  
Andrew Fagan ◽  
...  

The geographic origin of gem corundum has emerged as one of its major value factors. Combined with gemological observations, trace element analysis is a powerful tool for the determination of corundum provenance. However, owing to similar properties and features of gem corundum from different localities, but similar geological settings, and very low levels of many trace elements in gem corundum, the determination of geographic origin remains challenging. In this study, we present trace elements compositions determined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) for rubies and blue sapphires from several different localities of geologically similar deposits: high-Fe amphibolite-type rubies, low-Fe marble-type rubies, and metamorphic blue sapphires. In addition, we determined Sr and Pb isotopic ratios by offline laser ablation sampling followed by thermal ionization mass spectroscopy (TIMS). By applying new and existing elemental discrimination schemes and the multivariate statistical method linear discriminant analysis (LDA), we show that, in addition to the commonly used discriminators Mg, Fe, V, Ti, and Ga, the elements Ni, Zr, Cr, and Zn show potential for geographic origin determination. Amphibolite-type rubies from different localities can be discriminated using Sr and Pb isotope ratios, whereas the discrimination of marble-type ruby and metamorphic blue sapphires is limited. Our results re-emphasize the challenge of geographic origin determination and the need for a more powerful discriminatory tool.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 805 ◽  
Author(s):  
Aleksandr D. Savelev ◽  
Sergey V. Malyshev ◽  
Valery M. Savatenkov ◽  
Daniil D. Ignatov ◽  
Anastasia D. Kuzkina

We report major and trace element concentrations, along with Nd isotope compositions, for Late Mesoproterozoic to Early Neoproterozoic dolerite sills from the Sette-Daban ridge (southern Verkhoyansk, south-east Siberia). Based on their major element composition, all rocks correspond to low-Ti (<3 wt% TiO2) moderately alkaline basalts. The intrusions can be subdivided into two groups based on their trace element compositions. One group includes sills mainly distributed in the southern part of the study area (Yudoma group), with mid-ocean ridge basalt (MORB) trace element patterns enriched in aqueous fluid mobile incompatible (FMI) elements (Sr, Pb, Ba, U). The second group includes sills mostly distributed in the northern part of the study area, enriched in immobile incompatible (II) elements (Th, Nb, light rare earth elements (LREE)) and to a lesser extent, in aqueous fluid mobile elements. The Nd isotope signatures of the dolerites characterize a depleted mantle source, with a small enrichment from recycled continental crust. The geochemical characteristics of these igneous rocks are analogous to low-Ti basalts of large intraplate provinces (e.g., the Karoo and Siberian Traps). We propose that they formed by rifting-induced melting of the heterogeneous metasomatized shallow spinel-bearing mantle zone. We suggest that two different melting sources were involved in the generation of the two geochemically distinct sill groups, including the addition of two different subduction components. The southern sills were formed by melting of depleted lithospheric mantle enriched with FMI elements, corresponding to subduction-induced metasomatic alteration by fluids at shallow depths. The northern dolerites were formed by melting of depleted lithospheric mantle enriched with II elements, associated with the melting of subducted sediments at deeper depths.


2021 ◽  
Author(s):  
Fernanda Torres Garcia ◽  
Mauricio Calderón ◽  
Leonardo Fadel Cury ◽  
Thomas Theye ◽  
Joachim Opitz ◽  
...  

&lt;p&gt;During the Upper Jurassic-Lower Cretaceous times the western margin of Gondwana in southern Patagonia experienced extreme lithospheric extension and generation of rift and marginal back-arc basins. The ophiolitic complexes of the Rocas Verdes basin comprises incomplete ophiolite pseudostratigraphy lacking ultramafic rocks. The Tortuga Ophiolitic Complex, the southernmost seafloor remnant of the Rocas Verdes basin, record the most advanced evolutionary stage of the back-arc basin evolution in a mid-ocean ridge-type setting. The base of the Tortuga Complex consists of massive and layered gabbros, most of which are two pyroxene and olivine gabbros, leucogabbros, and clinopyroxene troctolites intruded by dikes of basalt and diabase with chilled margins. We present new major and trace element composition of clinopyroxene from the gabbros and sheeted dikes complexes to assess the geochemical affinity of parental basaltic magmas. Clinopyroxene in gabbros is mostly augite and have Al contents of 0.06-0.14 a.p.f.u. and Mg# of 80-92. Clinopyroxene in dolerites in the sheeted dike unit (augite and diopside) have Al content of 0.11-0.12 a.p.f.u. and Mg# of 85-92. Some immobile trace elements (e.g. Zr, Ti, Y) are sensitive to the degree of partial melting and mantle source composition, and can be used as a proxy for distinguishing tectonic environments. The Ti+Cr vs. Ca diagram, coupled with moderate-high TiO&lt;sub&gt;2&lt;/sub&gt; content of clinopyroxene (0.4-1.4 wt.%) suggests their generation in mid-oceanic ridge-type environment (cf. Beccaluva et al., 1989).&amp;#160; The high Ti/Zr ratios (of ~4-11) coupled with low Zr contents (~0.2-1.1) are expected for higher degrees of partial melting or for melting of more depleted mantle sources. Conversely, low Zr/Y ratios (0.05-0.13) plot between the range of arc basalts. Chondrite-normalized REE patterns in clinopyroxene display a strong depletion of LREE compared to HREE and have an almost flat pattern in the MREE to HREE with a positive Eu (Eu*= 0.9-1.1) anomaly, indicating that clinopyroxene crystallized from a strongly depleted mid-ocean-ridge-type basalt, formed by extensive fractional melting of the mantle source and/or fractional crystallization and accumulation of anhydrous phases. The general trend of the incompatible trace elements patterns exhibit depletion in LILEs, minor HFSEs depletion, positive anomaly of Rb and negative anomalies in Ba, Zr, Ti and Nb, consistent with their generation from a refractory mantle source barely influenced by subduction components derived from the oceanic slab. This agrees with basalt generation in a back-arc basin located far away from the convergent margin. This study was supported by the Fondecyt grant 1161818 and the Anillo Project ACT-105.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document