Tectono-magmatic Interplay and Related Metasomatism in Gabbros of the Chenaillet Ophiolite (Western Alps)

2019 ◽  
Vol 60 (12) ◽  
pp. 2483-2508 ◽  
Author(s):  
R Tribuzio ◽  
G Manatschal ◽  
M R Renna ◽  
L Ottolini ◽  
A Zanetti

Abstract The Jurassic Chenaillet ophiolite in the Western Alps consists of a gabbro–mantle association exhumed to the seafloor through detachment faulting and partly covered by basaltic lavas. One of the Chenaillet gabbroic bodies includes mylonites that are transected by a network of felsic veins, thereby testifying to the interplay of ductile shearing and magma emplacement. The deformed gabbros preserve clinopyroxene porphyroclasts of primary magmatic origin, which are typically mantled by amphibole (titanian edenite) and minor secondary clinopyroxene. Titanian edenite and secondary clinopyroxene also occur as fine-grained syn-kinematic phases locally associated with fine-grained plagioclase. The felsic veins are made up of anorthite-poor plagioclase and minor titanian edenite. Geothermometric investigations document that the ductile gabbro deformation and the crystallization of the felsic veins occurred at 765 ± 50 °C and 800 ± 55 °C, respectively. With respect to undeformed counterparts, the deformed gabbros are variably enriched in SiO2 and variably depleted in Mg/(Mg + Fetot2+) and Ca/(Ca + Na). In addition, the deformed gabbros show relatively high concentrations of incompatible trace elements such as rare earth elements (REE), Y, Zr and Nb. The felsic veins are characterized by low Mg/(Mg + Fetot2+) and Ca/(Ca + Na), high SiO2 and high concentrations of incompatible trace elements. Relict clinopyroxene porphyroclasts from the deformed gabbros display a rather primitive, mid-ocean ridge-type geochemical signature, which contrasts with the trace element fingerprint of titanian edenite from both the deformed gabbros and the felsic veins. For instance, titanian edenite typically has relatively high REE abundances, with chondrite-normalized REE patterns characterized by a pronounced negative Eu anomaly. A similar trace element signature is shown by secondary clinopyroxene from the deformed gabbros. Amphibole from both the deformed gabbros and the felsic veins displays high F/Cl values. We show that the SiO2-rich hydrous melts feeding the felsic veins were involved in the high-temperature gabbro deformation and that melt–gabbro reactions led to major and trace element metasomatism of the deforming gabbros.

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 588
Author(s):  
Indrani Mukherjee ◽  
Mihir Deb ◽  
Ross R. Large ◽  
Jacqueline Halpin ◽  
Sebastien Meffre ◽  
...  

The Vindhyan Basin in central India preserves a thick (~5 km) sequence of sedimentary and lesser volcanic rocks that provide a valuable archive of a part of the Proterozoic (~1800–900 Ma) in India. Here, we present an analysis of key sedimentary pyrite textures and their trace element and sulfur isotope compositions in the Bijaigarh Shale (1210 ± 52 Ma) in the Vindhyan Supergroup, using reflected light microscopy, LA-ICP-MS and SHRIMP-SI, respectively. A variety of sedimentary pyrite textures (fine-grained disseminated to aggregates, framboids, lags, and possibly microbial pyrite textures) are observed reflecting quiet and strongly anoxic water column conditions punctuated by occasional high-energy events (storm incursions). Key redox sensitive or sensitive to oxidative weathering trace elements (Co, Ni, Zn, Mo, Se) and ratios of (Se/Co, Mo/Co, Zn/Co) measured in sedimentary pyrites from the Bijaigarh Shale are used to infer atmospheric redox conditions during its deposition. Most trace elements are depleted relative to Proterozoic mean values. Sulfur isotope compositions of pyrite, measured using SHRIMP-SI, show an increase in δ34S as we move up stratigraphy with positive δ34S values ranging from 5.9‰ (lower) to 26.08‰ (upper). We propose limited sulphate supply caused the pyrites to incorporate the heavier isotope. Overall, we interpret these low trace element signatures and heavy sulfur isotope compositions to indicate relatively suppressed oxidative weathering on land during the deposition of the Bijaigarh Shale.


2020 ◽  
Vol 61 (2) ◽  
Author(s):  
Aaron Wolfgang Ashley ◽  
Michael Bizimis ◽  
Anne H Peslier ◽  
Matthew Jackson ◽  
Jasper G Konter

Abstract Water influences geodynamic processes such as melting, deformation and rheology, yet its distribution in the oceanic upper mantle is primarily known indirectly from melt inclusions and glasses of erupted mantle melts (i.e. mid-ocean ridge and ocean island basalts). To better constrain the mechanisms influencing the distribution of H2O in the mantle, particularly regarding the role of metasomatism, we analyzed 15 peridotite xenoliths from Savai‘i and two dunite xenoliths from Ta‘ū (Samoa) for structural H2O (by polarized Fourier transform infrared spectroscopy), and major and trace element concentrations. Clinopyroxenes from the Ta‘ū dunites show trace element concentrations consistent with equilibration with their host lavas, but lower H2O contents than expected. Savai‘i peridotites are highly depleted harzburgites (melt depletion ≥17 %). They show strong evidence of transient metasomatism by both carbonatite and silicate melts, with highly variable Ti and Zr depletions and light rare earth element enrichments. However, despite metasomatism the H2O concentrations in olivines (0 − 4 ppm H2O) and orthopyroxenes (17 − 89 ppm H2O) are among the lowest reported in oceanic xenoliths, but higher than expected for the estimated degree of depletion. In general, H2O concentrations vary less than those of other incompatible trace elements in these samples. Transects across mineral grains show generally homogeneous distributions of H2O, indicating no significant H2O loss or gain during ascent. Raman spectroscopy on inclusions in minerals shows the presence of CO2 but an absence of molecular H2O. This agrees with the absence of H2O concentration variations between inclusion-rich and -poor domains in minerals. The above data can be explained by transient metasomatism along grain boundaries, now recorded as planes of inclusions within annealed grains. Fast diffusion of hydrogen (but not lithophile elements) from the inclusions into the host mineral phase will simultaneously enrich H2O contents across the grain and lower them in the inclusion-rich domains. The result is highly variable metasomatism recorded in lithophile elements, with smaller magnitude H2O variations that are decoupled from lithophile element metasomatism. Comparison with xenoliths from Hawai‘i shows that evidence for metasomatism from lithophile elements alone does not imply rehydration of the oceanic lithosphere. Instead, H2O concentrations depend on the overall amount of H2O added to the lithosphere through metasomatism, and the proximity of sampled material to areas of melt infiltration in the lithosphere.


F, Cl and Br contents of tholeiitic volcanic glasses dredged along the Mid-Atlantic Ridge from 53° to 28° N, including the transect over the Azores Plateau, are reported. The halogen variations parallel those of 87 Sr/ 86 Sr, La/Sm or other incompatible elements of varying volatility. The latitudinal halogen variation pattern is not obliterated if only Mg-rich lavas are considered. Variations in extent of low-pressure fractional crystallization or partial melting conditions do not appear to be the primary cause of the halogen variations. Instead, mantle-derived heterogeneities in halogens, with major enrichments in the mantle beneath the Azores, are suggested. The Azores platform is not only a ‘hotspot’ but also a ‘wetspot’, which may explain the unusually intense Azores volcanic activity. The magnitude of the halogen and incompatible element enrichments beneath the Azores appear strongly dependent on the size of these anions and cations, but independent of relative volatility at low pressure. The large anions Cl and Br behave similarly to large cations Rb, Cs and Ba, and the smaller anion F similarly to Sr and P. Processes involving crystal and liquid (fluid and/or melt), CO 2 rather than H 2 O dominated, seem to have produced these largescale mantle heterogeneities. Geochemical ‘anomalies’ beneath the Azores are no longer apparent for coherent element pair ratios of similar ionic size. Values of such ‘unfractionated’ coherent trace element ratios provide an indication of the mantle composition and its nature before fractionation event (s) which produced the inferred isotopic and trace element heterogeneities apparently present beneath the North Atlantic. The relative trace element composition of this precursor mantle does not resemble that of carbonaceous chondrites except for refractory trace element pairs of similar ionic size. It is strongly depleted in halogens, and to a lesser extent in large alkali ions Rb and Cs relative to refractory Ba. These relative depletions are comparable within a factor of 5 to Ganapathy & Anders’s estimates for the bulk Earth, with the exception of Cs. There is also evidence for removal of phosphorus into the iron core during its formation. With the exception of San Miguel, alkali basalts from the Azores Islands appear to have been derived from the same mantle source as tholeiitic basalts from the ridge transect over the Azores Platform but by half as much degree of partial melting. The Azores subaerial basalts seem to have been partly degassed in Cl, Br and F, in decreasing order of intensity. A working model involving metasomatism from release of fluids at phase transformation during convective mantle overturns is proposed to explain the formation of mantle plumes or diapirs enriched in larger relative to smaller halogen and other incompatible trace elements. The model is ad hoc and needs testing. However, any other dynamical model accounting for the 400 -1000 km long gradients in incompatible trace elements, halogens and radiogenic isotopes along the Mid-Atlantic Ridge should, at some stage, require either (1) some variable extent of mixing or (2) differential migration of liquid relative to crystals followed by re-equilibration (or both), as a diffusion controlled mechanism over such large distances is clearly ruled out, given the age of the Earth.


The alkaline rocks of Carboniferous to Permian age in the Midland Valley province range in composition from hypersthene-normative, transitional basalts to strongly undersaturated basanitic and nephelinitic varieties. They were formed by varying degrees of equilibrium partial melting of a phlogopite peridotite mantle. Ba, Ce, Nb, P, Sr and Zr were strongly partitioned into the liquid during melting; K and Rb were retained by residual phlogopite for small degrees of melting only. The composition of the mantle source is inferred to have been broadly similar to that from which oceanic alkaline basalts are currently being generated. It was, however, heterogeneous as regards distribution of the incompatible trace elements, with up to fourfold variations in elemental abundances and ratios. The mantle beneath the province may be divisible into several areas, of some hundreds of square kilometres each, which retained a characteristic incompatible element chemistry for up to 50 Ma and which imparted a distinctive chemistry to all the basic magmas generated within them.


2021 ◽  
Author(s):  
Lingquan Zhao ◽  
Sumit Chakraborty ◽  
Hans-Peter Schertl

<p>The Xigaze ophiolite (Tibet), which occurs in the central segment of the Yarlung Zangbo Suture Zone, exposes a complete portion of a mantle sequence that consists essentially of fresh as well as serpentinized peridotites. We studied a sequence beneath the crustal section that exposes fresh, Cpx-bearing harzburgites and dunites that are underlain by serpentinized Cpx-bearing harzburgites and dunites. The rocks at the bottom are crosscut by dykes that have undergone different degrees of rodingitization. The modal compositions of peridotite from both fresh and serpentinized sections plot in abyssal upper mantle fields, with clinopyroxene modes less than 5 vol. %. Although harzburgites and dunites indicate that melt has been lost relative to primitive mantle compositions, the trace element patterns carry signatures of enrichment in incompatible elements, such as (i) “bowl-shaped” patterns of trace elements in silicate-Earth normalized spider diagrams, (ii) positive anomalies in highly incompatible trace elements such as Rb, Th, U, Ta, and (iii) enrichment of LREE in the clinopyroxenes from dunites and harzburgites. These features are indicative of complex melt transfer processes and cannot be produced by simple melt extraction. Petrographic studies reveal that harzburgite and dunite contain interstitial polyphase aggregates of olivine + Cpx + spinel + Opx and olivine + Cpx + Spinel, respectively. Experimental studies (e.g. Morgan and Liang, 2003) suggest that these aggregates represent frozen melt-rich components, indicating that fertile melt was percolating through the depleted harzburgite – dunite matrix. Presence of such “melt pods” would explain the trace element enrichment patterns of the bulk rock, as well as features such as reverse zoning (core: Cr, Fe<sup>2+</sup> rich, rim: Al, Mg rich) of spinels in polyphase aggregates in fresh dunites. These results show that melt extraction from the mantle is not a single stage process, and that evidence of multiple melt pulses that propagated through a rock are preserved in the petrographic features as well as in the form of chemical signatures that indicate refertilization of initially depleted rocks.</p>


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 526 ◽  
Author(s):  
Yejian Wang ◽  
Xiqiu Han ◽  
Sven Petersen ◽  
Matthias Frische ◽  
Zhongyan Qiu ◽  
...  

The ultramafic-hosted Kairei vent field is located at 25°19′ S, 70°02′ E, towards the Northern end of segment 1 of the Central Indian Ridge (CIR-S1) at a water depth of ~2450 m. This study aims to investigate the distribution of trace elements among sulfide minerals of differing textures and to examine the possible factors controlling the trace element distribution in those minerals using LA-ICP-MS spot and line scan analyses. Our results show that there are distinct systematic differences in trace element distributions throughout the different minerals, as follows: (1) pyrite is divided into three types at Kairei, including early-stage euhedral pyrite (py-I), sub-euhedral pyrite (py-II), and colloform pyrite (py-III). Pyrite is generally enriched with Mo, Au, As, Tl, Mn, and U. Pyrite-I has high contents of Se, Te, Bi, and Ni when compared to the other types; py-II is enriched in Au relative to py-I and py-III, but poor in Ni; py-III is enriched in Mo, Pb, and U but is poor in Se, Te, Bi, and Au relative to py-I and py-II. Variations in the concentrations of Se, Te, and Bi in pyrite are most likely governed by the strong temperature gradient. There is generally a lower concentration of nickel than Co in pyrite, indicating that our samples precipitated at high temperatures, whereas the extreme Co enrichment is likely from a magmatic heat source combined with an influence of serpentinization reactions. (2) Chalcopyrite is characterized by high concentrations of Co, Se, and Te. The abundance of Se and Te in chalcopyrite over the other minerals is interpreted to have been caused by the high solubilities of Se and Te in the chalcopyrite lattice at high temperatures. The concentrations of Sb, As, and Au are relatively low in chalcopyrite from the Kairei vent field. (3) Sphalerite from Zn-rich chimneys is characterized by high concentrations of Sn, Co, Ga, Ge, Ag, Pb, Sb, As, and Cd, but is depleted in Se, Te, Bi, Mo, Au, Ni, Tl, Mn, Ba, V, and U in comparison with the other minerals. The high concentrations of Cd and Co are likely caused by the substitution of Cd2+ and Co2+ for Zn2+ in sphalerite. A high concentration of Pb accompanied by a high Ag concentration in sphalerite indicates that Ag occurs as Pb–Ag sulfosalts. Gold is generally low in sphalerite and strongly correlates with Pb, suggesting its presence in microinclusions of galena. The strong correlation of As with Ge in sphalerite from Kairei suggests that they might precipitate at medium temperatures and under moderately reduced conditions. (4) Bornite–digenite has very low concentrations of most trace elements, except for Co, Se, and Bi. Serpentinization in ultramafic-hosted hydrothermal systems might play an important role in Au enrichment in pyrite with low As contents. Compared to felsic-hosted seafloor massive sulfide deposits, sulfide minerals from ultramafic-hosted deposits show higher concentrations of Se and Te, but lower As, Sb, and Au concentrations, the latter often attributed to the contribution of magmatic volatiles. As with typical ultramafic-hosted seafloor massive sulfide deposits, Se enrichment in chalcopyrite from Kairei indicates that the primary factor that controls the Se enrichment is temperature-controlled mobility in vent fluids.


2015 ◽  
Vol 153 (4) ◽  
pp. 618-634 ◽  
Author(s):  
XIUGEN FU ◽  
JIAN WANG ◽  
XINGLEI FENG ◽  
WENBIN CHEN ◽  
DONG WANG ◽  
...  

AbstractThe sediments of organic-rich oil shales in the Bilong Co. area can be correlated with those of the early Toarcian anoxic black-shale events in Europe. The Bilong Co. sediments are rich in trace elements Se, Mo, Cd, As and Ni, and, to a lesser extent, Li, F, V, Co, Cu, Cs, Hg and Bi, in comparison to the upper continental crust. Thirty-two oil shale samples were collected from the Bilong Co. oil shale to evaluate the controlling factors of trace-element enrichment in the lower Toarcian anoxic sediments. Minerals identified in the Bilong Co. oil shale include calcite, quartz, illite, feldspar and dolomite, and trace amounts of siderite, magnesite, halite, haematite, zeolite, amphibole, gypsum, anhydrite, apatite, pyrite, sphalerite, barite and mixed-layer illite/smectite. Mineralogical and geochemical data show that seawater and hydrothermal activities are the dominant influences on the mineralogical composition and elevated trace-element concentrations in the oil shale. The clay minerals, quartz and feldspar in the Bilong Co. oil shale were derived from the Nadi Kangri volcanic rocks. Input of sediment from this source may have led to enrichment of trace elements Li, Cr and Cs in the oil shale. Carbonate minerals and nodular- and framboidal-pyrite are authigenic phases formed from seawater. The enrichment of V, Co, Ni, Cu, Mo, As, Se, Bi and U in the oil shale was owing to marine influence. Barite, sphalerite and fracture-filling pyrites were derived from hydrothermal solutions. High concentrations of F, Zn and Cd were probably derived from hydrothermal fluids.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 175
Author(s):  
Zhen Dong ◽  
Chunhui Tao ◽  
Jin Liang ◽  
Shili Liao ◽  
Wei Li ◽  
...  

As one of the regional, magmatic, robust, axial ridge segments along the ultraslow-spreading Southwest Indian Ridge (SWIR), the magmatic process and mantle composition of the axial high relief at 64° E is still unclear. Here, we present major and trace elements and Sr-Nd-Pb isotope data of mid-ocean ridge basalts (MORBs) from 64° E. The basalts show higher contents of Al2O3, SiO2, and Na2O and lower contents of TiO2, CaO, and FeO for a given MgO content, and depletion in heavy rare-earth elements (HREE), enrichment in large-ion lithophile elements, and lower 87Sr/86Sr, 143Nd/144Nd and higher radiogenic Pb isotopes than the depleted MORB mantle (DMM). The high Zr/Nb (24–43) and low Ba/Nb (3.8–7.0) ratios are consistent with typical, normal MORB (N-MORB). Extensive plagioclase fractional crystallization during magma evolution was indicated, while fractionation of olivine and clinopyroxene is not significant, which is consistent with petrographic observations. Incompatible trace elements and isotopic characteristics show that the basaltic melt was formed by the lower partial melting degree of spinel lherzolite than that of segment #27 (i.e., Duanqiao Seamount, 50.5° E), Joseph Mayes Mountain (11.5° E), etc. The samples with a DMM end-member are unevenly mixed with the lower continental crust (LCC)- and the enriched mantle end-member (EM2)-like components, genetically related to the Gondwana breakup and contaminated by upper and lower continental crust (or continental mantle) components.


1994 ◽  
Vol 58 (391) ◽  
pp. 205-214 ◽  
Author(s):  
J. V. Owen ◽  
J. Dostal ◽  
B. N. Church

AbstractMetasomatic interaction on a cm scale between calc-silicate pods and the enclosing sillimanite + biotite + tourmaline gneiss at Partridge Breast Lake, northern Manitoba, Canada, led to the development of an inner (by calc-silicate rock), hornblende-rich reaction zone and an outer, biotite-rich zone. The boundary between the reaction zones is interpreted as the original calc-silicate/metapelite interface. Compared with its metapelitic protolith, the biotite zone shows a two- to twenty-fold depletion in the concentrations of incompatible trace elements (notably the light rare earths, U, Th, Nb, Ta, Zr and Hf). In contrast, the relative concentrations of trace elements remained nearly constant during the mineralogical transformation of the calc-silicate rock to the hornblende zone. The depletion of trace elements in the biotite zone is attributed to the dissolution of accessory phases (e.g. monazite). Although stable at the metamorphic conditions (∼600–650°C at ∼ 4.5 kbar) prevalent during metasomatism, Mg-rich tourmaline is absent in the biotite zone, suggesting that either the pH or composition (e.g. the (Al + Si)/(Ca + Mg + Fe) ratio) of the aqueous fluid phase was inappropriate for the preservation of this mineral.


Author(s):  
Beñat Oliveira ◽  
Juan Carlos Afonso ◽  
Romain Tilhac

Abstract Besides standard thermo-mechanical conservation laws, a general description of mantle magmatism requires the simultaneous consideration of phase changes (e.g. from solid to liquid), chemical reactions (i.e. exchange of chemical components) and multiple dynamic phases (e.g. liquid percolating through a deforming matrix). Typically, these processes evolve at different rates, over multiple spatial scales and exhibit complex feedback loops and disequilibrium features. Partially as a result of these complexities, integrated descriptions of the thermal, mechanical and chemical evolution of mantle magmatism have been challenging for numerical models. Here we present a conceptual and numerical model that provides a versatile platform to study the dynamics and nonlinear feedbacks inherent in mantle magmatism and to make quantitative comparisons between petrological and geochemical datasets. Our model is based on the combination of three main modules: (1) a Two-Phase, Multi-Component, Reactive Transport module that describes how liquids and solids evolve in space and time; (2) a melting formalism, called Dynamic Disequilibirum Melting, based on thermodynamic grounds and capable of describing the chemical exchange of major elements between phases in disequilibrium; (3) a grain-scale model for diffusion-controlled trace-element mass transfer. We illustrate some of the benefits of the model by analyzing both major and trace elements during mantle magmatism in a mid-ocean ridge-like context. We systematically explore the effects of mantle potential temperature, upwelling velocity, degree of equilibrium and hetererogeneous sources on the compositional variability of melts and residual peridotites. Our model not only reproduces the main thermo-chemical features of decompression melting but also predicts counter-intuitive differentiation trends as a consequence of phase changes and transport occurring in disequilibrium. These include a negative correlation between Na2O and FeO in melts generated at the same Tp and the continued increase of the melt’s CaO/Al2O3 after Cpx exhaustion. Our model results also emphasize the role of disequilibrium arising from diffusion for the interpretation of trace-element signatures. The latter is shown to be able to reconcile the major- and trace-element compositions of abyssal peridotites with field evidence indicating extensive reaction between peridotites and melts. The combination of chemical disequilibrium of major elements and sluggish diffusion of trace elements may also result in weakened middle rare earth to heavy rare earth depletion comparable with the effect of residual garnet in mid-ocean ridge basalt, despite its absence in the modelled melts source. We also find that the crystallization of basalts ascending in disequilibrium through the asthenospheric mantle could be responsible for the formation of olivine gabbros and wehrlites that are observed in the deep sections of ophiolites. The presented framework is general and readily extendable to accommodate additional processes of geological relevance (e.g. melting in the presence of volatiles and/or of complex heterogeneous sources, refertilization of the lithospheric mantle, magma channelization and shallow processes) and the implementation of other geochemical and isotopic proxies. Here we illustrate the effect of heterogeneous sources on the thermo-mechanical-chemical evolution of melts and residues using a mixed peridotite–pyroxenite source.


Sign in / Sign up

Export Citation Format

Share Document