Coronal transients: a summary

Observations with orbiting coronagraphs have illuminated the role of coronal mass ejections in solar activity, and raised a number of questions concerning their origin, the nature of the forces driving the coronal material, and their signature in interplanetary space. Current models of the ejection process - including propagation of loops as a result of azimuthal field gradients, ring currents or a build-up of magnetic pressure from below - are summarized, as are magnetohydrodynamic codes intended to stimulate transient conditions. Metric radio observations, can, in principle, distinguish the relative role of the magnetic field in the ejection process; observations to date are surveyed. It is concluded that at present, no compelling evidence is available to distinguish between transient driving mechanisms, but future observations of the corona and interplanetary medium may resolve the present ambiguity.

2008 ◽  
Vol 26 (1) ◽  
pp. 145-157 ◽  
Author(s):  
H. Nilsson ◽  
M. Waara ◽  
O. Marghitu ◽  
M. Yamauchi ◽  
R. Lundin ◽  
...  

Abstract. The role of the centrifugal acceleration mechanism for ion outflow at high altitude above the polar cap has been investigated. Magnetometer data from the four Cluster spacecraft has been used to obtain an estimate of magnetic field gradients. This is combined with ion moment data of the convection drift and the field-aligned particle velocity. Thus all spatial terms in the expression for the centrifugal acceleration are directly obtained from observations. The temporal variation of the unit vector of the magnetic field is estimated by predicting consecutive measurement-points through the use of observed estimates of the magnetic field gradients, and subtracting this from the consecutively observed value. The calculation has been performed for observations of outflowing O+ beams in January to May for the years 2001–2003, and covers an altitude range of about 5 to 12 RE. The accumulated centrifugal acceleration during each orbit is compared with the observed parallel velocities to get an estimate of the relative role of the centrifugal acceleration. Finally the observed spatial terms (parallel and perpendicular) of the centrifugal acceleration are compared with the results obtained when the magnetic field data was taken from the Tsyganenko T89 model instead. It is found that the centrifugal acceleration mechanism is significant, and may explain a large fraction of the parallel velocities observed at high altitude above the polar cap. The magnetic field model results underestimate the centrifugal acceleration at the highest altitudes investigated and show some systematic differences as compared to the observations in the lower altitude ranges investigated. Our results indicate that for altitudes corresponding to magnetic field values of more than 50 nT a test particle model with a steady state magnetic field model, a realistic convection model and an initial velocity of about 20 k m s−1 at 5 RE should be able to reproduce the main part of our observational results.


2008 ◽  
Vol 4 (S257) ◽  
pp. 133-143
Author(s):  
A. Nindos

AbstractMagnetic helicity is a quantity that describes the linkage and twistedness/shear in the magnetic field. It has the unique feature that it is probably the only physical quantity which is approximately conserved even in resistive MHD. This makes magnetic helicity an ideal tool for the exploration of the physics of eruptive events. The concept of magnetic helicity can be used to monitor the whole history of a CME event from the emergence of twisted magnetic flux from the convective zone to the eruption and propagation of the CME into interplanetary space. In this article, I discuss the sources of the magnetic helicity injected into active regions and the role of magnetic helicity in the initiation of solar eruptions.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1812
Author(s):  
Karol Augustowski ◽  
Józef Kukulak

The rate of bank retreat was measured using erosion pins on the alluvial banks of the rivers in the Podhale region (the boundary zone between Central and Outer Carpathians) during the hydrological year 2013/2014. During the winter half-year (November–April), the bank retreat was mainly caused by processes related to the freezing and thawing of the ground (swelling, creep, downfall). During the summer half-year (May–October), fluvial processes and mass movements such as lateral erosion, washing out, and sliding predominated. The share of fluvial processes in the total annual amount of bank retreat (71 cm on average) was 4 times greater than that of the frost phenomena. Erosion on bank surfaces by frost phenomena during the cold half-year was greatest (up to 38 cm) on the upper parts of banks composed of fine-grained alluvium, while fluvial erosion during the summer half-year (exceeding 80 cm) mostly affected the lower parts of the banks, composed of gravel. The precise calculation of the relative role of frost phenomena in the annual balance of bank erosion was precluded at some stations by the loss of erosion pins in the summer flood.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1168
Author(s):  
Elena Belenkaya ◽  
Ivan Pensionerov

On 14 January 2008, the MESSENGER spacecraft, during its first flyby around Mercury, recorded the magnetic field structure, which was later called the “double magnetopause”. The role of sodium ions penetrating into the Hermean magnetosphere from the magnetosheath in generation of this structure has been discussed since then. The violation of the symmetry of the plasma parameters at the magnetopause is the cause of the magnetizing current generation. Here, we consider whether the change in the density of sodium ions on both sides of the Hermean magnetopause could be the cause of a wide diamagnetic current in the magnetosphere at its dawn-side boundary observed during the first MESSENGER flyby. In the present paper, we propose an analytical approach that made it possible to determine the magnetosheath Na+ density excess providing the best agreement between the calculation results and the observed magnetic field in the double magnetopause.


2002 ◽  
Vol 751 ◽  
Author(s):  
Qinglei Wang ◽  
Guoda D. Lian ◽  
Elizabeth C. Dickey

ABSTRACTSolute segregation to grain boundaries is a fundamental phenomenon in polycrystalline metal-oxide electroceramics that has enormous implications for the macroscopic dielectric behavior of the materials. This paper presents a systematic study of solute segregation in a model dielectric, titanium dioxide. We investigate the relative role of the electrostatic versus strain energy driving forces for segregation by studying yttrium-doped specimens. Through analytical transmission electron microscopy studies, we quantitatively determine the segregation behavior of the material. The measured Gibbsian interfacial excesses are compared to thermodynamic predictions.


Sign in / Sign up

Export Citation Format

Share Document